This is a Python 3.8 script that permits to start from a molecule graph and computed a XYZ configuration.
This program used a python3 interface, to run this code you must install on your machine this list of packages:
networkx
rdkit
ASE
0 - Import the required packages
from rdkit import Chem
from rdkit.Chem import AllChem
import networkx as nx
from ase import io, neighborlist, atoms
1 - Function that encode the molecules from graph object to .XYZ format, and you will call it in the main of the code.
def MolFromGraphs(G):
# Function based by https://stackoverflow.com/questions/51195392/smiles-from-graph
'''
Function that takes as input the networkx graph (each node must have an atom property H,N,C,O etc) and return the mol (rdkit) object
the function dont discriminate between different type of bond, it care only about the connectivity.
'''
adjacency_matrix = nx.convert_matrix.to_numpy_matrix(G,weight='bond').tolist()
node_list = []
for i,node in enumerate(G):
node_list.append(G.nodes[i]['atom'])
#Create empty editable mol object
mol = Chem.RWMol()
#Add atoms to mol and keep track of index
node_to_idx = {}
for i in range(len(node_list)):
a = Chem.Atom(node_list[i])
molIdx = mol.AddAtom(a)
node_to_idx[i] = molIdx
#Add bonds between adjacent atoms
for ix, row in enumerate(adjacency_matrix):
for iy, bond in enumerate(row):
#Only traverse half the matrix
if iy >= ix:
break
#Add relevant bond type (there are many more of these)
if bond == 0:
continue
elif bond == 1:
bond_type = Chem.rdchem.BondType.SINGLE
mol.AddBond(node_to_idx[ix], node_to_idx[iy], bond_type)
elif bond == 2:
bond_type = Chem.rdchem.BondType.DOUBLE
mol.AddBond(node_to_idx[ix], node_to_idx[iy], bond_type)
elif bond == 3:
bond_type = Chem.rdchem.BondType.TRIPLE
mol.AddBond(node_to_idx[ix], node_to_idx[iy], bond_type)
mol.UpdatePropertyCache(strict=False)
#Add the possibility in N bearing species cations to have valence 4 for the N center
for at in mol.GetAtoms():
if at.GetAtomicNum() == 7 and at.GetExplicitValence()==4 and at.GetFormalCharge()==0:
at.SetFormalCharge(1)
Chem.SanitizeMol(mol)
return mol
2 - Code main: computing the .XYZ optimized structure at UFF level from molecular graph object.
2.1 - Input the parameters in order to create an Molecular graph.
#INPUT - Change the above line in order to save the computed .xyz in the choose path
path = '/Users/aaa/Documents/FromGraphToXYZ/'
#INPUT - Name of the molecules for the .xyz file
name = 'CH4'
#INPUT - Ordinated list of atoms in the choose molecule
atoms = ['H','H','H','H','C']
#INPUT - Ordinated list of bond in the choose molecule (1 = sigma, 2 = pi, 3 = 2 * pi)
bonds = [1,1,1,1]
#INPUT - Ordinated order of Connettivity between list of atom
edges = [[0,4],[1,4],[2,4],[3,4]]
2.2 - Computed the info into molecular graph object
connectivity = []
for i,item in enumerate(edges):
connectivity.append((edges[i][0],edges[i][1], {'bond': bonds[i]}))
n_dim = len(atoms)
G = nx.Graph()
for i,atom in enumerate(atoms):
G.add_node(i)
tmp_attr = {'atom': atom}
G.nodes[i].update(tmp_attr.copy())
G.add_edges_from(connectivity)
2.3 - Encode the molecules from graph object to XYZ format
tmp_mol = MolFromGraphs(G)
2.4 - Read the molecules in RdKit
AllChem.EmbedMolecule(tmp_mol)
2.5 - Optimized the guessed structure with UFF in RdKit
AllChem.UFFOptimizeMolecule(tmp_mol)
2.6 - Save the .XYZ file of the optimized structure
with open(path + name + '.xyz', "w+") as file_mol:
file_mol.write(Chem.MolToXYZBlock(tmp_mol))
Please reffer to the following publication to cite our work or retrieve the info:
(https://doi.org/10.3847/1538-4365/ac194c)
This project has received funding within the European Union’s Horizon 2020 research and innovation programme from the Marie Sklodowska-Curie for the project ”Astro-Chemical Origins” (ACO), grant agreement No 811312.