-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathfun_parse_cfg.py
308 lines (269 loc) · 15.3 KB
/
fun_parse_cfg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# -*- coding: utf-8 -*-
"""
parse darknet .cfg file to a list
@author: Tommy Huang, chih.sheng.huang821@gmail.com
"""
import configparser
from collections import defaultdict
import io
def unique_config_sections(config_file):
"""Convert all config sections to have unique names.
Adds unique suffixes to config sections for compability with configparser.
"""
section_counters = defaultdict(int)
output_stream = io.StringIO()
with open(config_file) as fin:
for line in fin:
if line.startswith('['):
section = line.strip().strip('[]')
_section = section + '_' + str(section_counters[section])
section_counters[section] += 1
line = line.replace(section, _section)
output_stream.write(line)
output_stream.seek(0)
return output_stream
def yolo_parse(path_cfg):
unique_config_file = unique_config_sections(path_cfg)
cfg_parser = configparser.ConfigParser()
cfg_parser.read_file(unique_config_file)
all_layers=[]
image_height = int(cfg_parser['net_0']['height'])
image_width = int(cfg_parser['net_0']['width'])
image_channel = int(cfg_parser['net_0']['channels'])
image_structure={'image_height':image_height,'image_width':image_width,'image_channel':image_channel}
# data augmentation, training parameter:
angle = float(cfg_parser['net_0']['angle'])
saturation = float(cfg_parser['net_0']['saturation']) # 飽和度
exposure = float(cfg_parser['net_0']['exposure']) #曝光度
hue = float(cfg_parser['net_0']['hue']) #色調
training_DataAugmentation={'angle':angle,'saturation': saturation,
'exposure':exposure,'hue':hue}
# rnn setting
time_steps, track, augment_speed='','',''
batch, subdivisions='',''
momentum, weight_decay, learning_rate='','',''
burn_in, max_batches, policy='','',''
steps, scales='',''
sgdr_cycle, sgdr_mult, seq_scales='','',''
if 'batch' in cfg_parser['net_0']:
batch = int(cfg_parser['net_0']['batch'].split('#')[0])
if 'subdivisions' in cfg_parser['net_0']:
subdivisions = int(cfg_parser['net_0']['subdivisions'].split('#')[0])
if 'track' in cfg_parser['net_0']: track = int(cfg_parser['net_0']['track'].split('#')[0])
if 'time_steps' in cfg_parser['net_0']: time_steps = int(cfg_parser['net_0']['time_steps'].split('#')[0])
if 'augment_speed' in cfg_parser['net_0']:augment_speed = int(cfg_parser['net_0']['augment_speed'].split('#')[0])
# training learning parameter:
if 'momentum' in cfg_parser['net_0']:
momentum = float(cfg_parser['net_0']['momentum'])
if 'weight_decay' in cfg_parser['net_0']:
weight_decay = float(cfg_parser['net_0']['decay']) if 'net_0' in cfg_parser.sections() else 5e-4
if 'learning_rate' in cfg_parser['net_0']:
learning_rate = float(cfg_parser['net_0']['learning_rate']) #學習率
if 'burn_in' in cfg_parser['net_0']:
burn_in = int(cfg_parser['net_0']['burn_in']) #學習率控制的參數
if 'max_batches' in cfg_parser['net_0']:
max_batches = int(cfg_parser['net_0']['max_batches']) #跌代次數
if 'policy' in cfg_parser['net_0']:
policy = (cfg_parser['net_0']['policy']) #學習率策略
if 'steps' in cfg_parser['net_0']:
steps = list(map(int,cfg_parser['net_0']['steps'].split(','))) #學習率變動步長
if 'scales' in cfg_parser['net_0']:
scales = list(map(float,cfg_parser['net_0']['scales'].split(','))) #學習率變動因子
#
if 'sgdr_cycle' in cfg_parser['net_0']:
sgdr_cycle = list(map(float,cfg_parser['net_0']['sgdr_cycle'].split(',')))
if 'sgdr_mult' in cfg_parser['net_0']:
sgdr_mult = list(map(float,cfg_parser['net_0']['sgdr_mult'].split(',')))
if 'seq_scales' in cfg_parser['net_0']:
seq_scales = list(map(float,cfg_parser['net_0']['seq_scales'].split(',')))
training_parameter={'batch':batch,
'subdivisions':subdivisions,
'momentum':momentum,
'weight_decay': weight_decay,
'learning_rate': learning_rate,
'burn_in':burn_in,
'max_batches':max_batches,
'augment_speed':augment_speed,
'policy':policy,
'steps':steps,
'track':track,
'scales':scales,
'sgdr_cycle':sgdr_cycle,
'sgdr_mult': sgdr_mult,
'seq_scales': seq_scales}
structure={'type':'input',
'image_structure':image_structure,
'training_DataAugmentation': training_DataAugmentation,
'training_parameter': training_parameter }
all_layers.append(structure)
#all_layers.append([image_height,image_width,image_channel])
count_layer = 0
for section in cfg_parser.sections():
print('Parsing section {}'.format(section))
if section.startswith('convolutional'):
filters = int(cfg_parser[section]['filters'])
size = int(cfg_parser[section]['size'])
stride = int(cfg_parser[section]['stride'])
pad = int(cfg_parser[section]['pad'])
activation = cfg_parser[section]['activation']
batch_normalize = 'batch_normalize' in cfg_parser[section]
if all_layers[-1]['type']!='input':
if all_layers[-1]['type']=='shortcut':
prev_layer=all_layers[-1]['prev_layer']
else:
prev_layer=all_layers[-1]['layer']
else:
prev_layer=0
structure={'type':'convolutional','prev_layer': prev_layer,'layer': count_layer ,'filters':filters,'size':size,'stride':stride,'pad':pad,'activation':activation,'batch_normalize':batch_normalize}
print('prev_layer:{}, layer:{}, conv., filter size={}, kernel size={}, stride={}, pad={}, activation={}, batch_normalize={}'.format(prev_layer,count_layer,filters,size,stride,pad,activation,batch_normalize))
all_layers.append(structure)
elif section.startswith('maxpool'):
size = int(cfg_parser[section]['size'])
stride = int(cfg_parser[section]['stride'])
if all_layers[-1]['type']!='input':
if all_layers[-1]['type']=='shortcut':
prev_layer=all_layers[-1]['prev_layer']
else:
prev_layer=all_layers[-1]['layer']
else:
prev_layer=''
structure={'type':'maxpool','prev_layer': prev_layer,'layer': count_layer ,'size':size,'stride':stride}
print('prev_layer:{}, layer:{}, maxpool, size={}, stride={}'.format(prev_layer,count_layer,size,stride))
all_layers.append(structure)
prev_layer = all_layers[-1]['layer']
elif section.startswith('avgpool'):
if all_layers[-1]['type']!='input':
if all_layers[-1]['type']=='shortcut':
prev_layer=all_layers[-1]['prev_layer']
else:
prev_layer=all_layers[-1]['layer']
else:
prev_layer=''
structure={'type':'avgpool', 'prev_layer': prev_layer,'layer': count_layer}
print('prev_layer:{}, layer:{}, avgpool'.format(prev_layer, count_layer))
all_layers.append(structure)
prev_layer = all_layers[-1]['layer']
elif section.startswith('route'):
ids = [int(i) for i in cfg_parser[section]['layers'].split(',')]
layers=[]
for i in ids:
if i>0:
layers.append(all_layers[i+1])
else:
layers.append(all_layers[i])
#layers = [all_layers[i] for i in ids]
if len(layers) > 1:
prev_layer=[i['layer'] for i in layers]
structure={'type':'concatenate', 'prev_layer': prev_layer, 'layer': count_layer}
print('prev_layer:{}, layer:{}, concatenate'.format(prev_layer, count_layer))
all_layers.append(structure)
else:
skip_layer = layers[0] # only one layer to route
skip_layer = skip_layer['layer']
if skip_layer<0:
prev_layer=count_layer+skip_layer
else:
prev_layer=skip_layer
structure={'type':'shortcut', 'prev_layer': prev_layer, 'layer': count_layer}
print('prev_layer:{}, layer:{}, shortcut'.format(prev_layer, count_layer))
all_layers.append(structure)
elif section.startswith('reorg'):
# stride = int(cfg_parser[section]['stride'])
block_size = int(cfg_parser[section]['stride'])
assert block_size == 2, 'Only reorg with stride 2 supported.'
if all_layers[-1]['type']!='input':
if all_layers[-1]['type']=='shortcut':
prev_layer=all_layers[-1]['prev_layer']
else:
prev_layer=all_layers[-1]['layer']
else:
prev_layer=''
structure={'type':'reorg', 'prev_layer': prev_layer, 'layer': count_layer,'stride': block_size}
print('prev_layer:{}, layer:{}, reorg'.format(prev_layer, count_layer))
all_layers.append(structure)
elif section.startswith('region'):
if all_layers[-1]['type']!='input':
if all_layers[-1]['type']=='shortcut':
prev_layer=all_layers[-1]['prev_layer']
else:
prev_layer=all_layers[-1]['layer']
else:
prev_layer=''
anchors=cfg_parser[section]['anchors']
classes = int(cfg_parser[section]['classes'])
structure={'type':'region', 'prev_layer': prev_layer, 'layer': count_layer, 'classes':classes, 'anchors':anchors }
print('prev_layer:{}, layer:{}, classes:{}, anchors:{}'.format(prev_layer, count_layer,classes, anchors))
all_layers.append(structure)
elif section.startswith('shortcut'):
ids = [int(i) for i in cfg_parser[section]['from'].split(',')][0]
'''
Becasue I add input image layer in first factor of all_layers list,
the corresponding layer code must +1 (if layer code is postive number)
'''
if ids>0:
ids+=1
activation = cfg_parser[section]['activation']
prev_layer=[ all_layers[ids]['layer'], all_layers[-1]['layer']]
structure={'type':'residual', 'prev_layer': prev_layer, 'layer': count_layer, 'activation': activation}
print('prev_layer:{}, layer:{}, residual, activation:{}'.format(prev_layer, count_layer,activation))
all_layers.append(structure)
elif section.startswith('upsample'):
stride = int(cfg_parser[section]['stride'])
if all_layers[-1]['type']!='input':
if all_layers[-1]['type']=='shortcut':
prev_layer=all_layers[-1]['prev_layer']
else:
prev_layer=all_layers[-1]['layer']
else:
prev_layer=''
structure={'type':'upsample', 'prev_layer': prev_layer, 'layer': count_layer,'stride':stride}
print('prev_layer:{}, layer:{}, upsample'.format(prev_layer, count_layer))
all_layers.append(structure)
elif section.startswith('yolo'):
classes = int(cfg_parser[section]['classes'])
#mask = [int(i) for i in cfg_parser[section]['mask'].split(',')]
mask = cfg_parser[section]['mask']
anchors=cfg_parser[section]['anchors']
if all_layers[-1]['type']!='input':
if all_layers[-1]['type']=='shortcut':
prev_layer=all_layers[-1]['prev_layer']
else:
prev_layer=all_layers[-1]['layer']
else:
prev_layer=''
structure={'type':'yolo', 'prev_layer': prev_layer, 'layer': count_layer,'classes':classes,'mask': mask,'anchors':anchors}
print('prev_layer:{}, layer:{}, yolo, classes:{}, mask:{}, anchors:{}'.format(prev_layer, count_layer,classes,mask,anchors))
all_layers.append(structure)
elif section.startswith('crnn'):
hidden = int(cfg_parser[section]['hidden'])
size = int(cfg_parser[section]['size'])
output = int(cfg_parser[section]['output'])
pad = int(cfg_parser[section]['pad'])
activation = cfg_parser[section]['activation']
batch_normalize = 'batch_normalize' in cfg_parser[section]
if all_layers[-1]['type']!='input':
if all_layers[-1]['type']=='shortcut':
prev_layer=all_layers[-1]['prev_layer']
else:
prev_layer=all_layers[-1]['layer']
else:
prev_layer=0
structure={'type':'crnn','prev_layer': prev_layer,'layer': count_layer,'output':output ,'hidden':hidden,'size':size,'pad':pad,'activation':activation,'batch_normalize':batch_normalize,'time_steps':time_steps}
print('prev_layer:{}, layer:{}, crnn., output size={}, hidden size={}, time_steps={},size={}, pad={}, activation={}, batch_normalize={}'.format(prev_layer,count_layer,output, hidden,time_steps, size,pad,activation,batch_normalize))
all_layers.append(structure)
elif section.startswith('conv_lstm'):
size = int(cfg_parser[section]['size'])
output = int(cfg_parser[section]['output'])
pad = int(cfg_parser[section]['pad'])
activation = cfg_parser[section]['activation']
batch_normalize = 'batch_normalize' in cfg_parser[section]
peephole = 'peephole' in cfg_parser[section]
prev_layer=all_layers[-1]['layer']
structure={'type':'conv_lstm','prev_layer': prev_layer,'layer': count_layer,'output':output,'size':size,'pad':pad,'activation':activation,'batch_normalize':batch_normalize,'time_steps':time_steps,'peephole':peephole}
print('prev_layer:{}, layer:{}, conv_lstm., output size={}, time_steps={},size={}, pad={}, activation={}, batch_normalize={}'.format(prev_layer,count_layer,output,time_steps, size,pad,activation,batch_normalize))
all_layers.append(structure)
elif (section.startswith('net') or section.startswith('cost') or
section.startswith('softmax')):
pass # Configs not currently handled during model definition.
count_layer+=1
return all_layers