Skip to content

An extendable Statsbomb API wrapper for data-pipelines

License

Notifications You must be signed in to change notification settings

Torvaney/statsbombapi

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

statsbombapi

API wrapper and dataclasses for StatsBomb data

Installation

To get the latest version from GitHub:

pip install git+https://github.com/torvaney/statsbombapi.git

Getting started

>>> import statsbombapi

# Connect to the Public Data Repo
>>> api = statsbombapi.StatsbombPublic()
UserWarning: Please be responsible with StatsBomb data and make sure you have
 registered your details on https://www.statsbomb.com/resource-centre, and read and
 accepted the User Agreement (available on the same page).
  warnings.warn(statsbomb_data_advice)

# Or, if connecting to the API proper
>>> api = statsbombapi.StatsbombAPI(username='...', password='...')

The StatsBomb API provides 4 routes, which can be accessed by calling the corresponding methods on StatsBombPublic or StatsBombAPI.

  • competitions - api.competitions()
  • matches - api.matches(competition_id, season_id)
  • lineups - api.lineups(match_id)
  • events - api.events(match_id)

Competitions

>>> competitions = api.competitions()
>>> competitions[0].competition
Competition(id=37, name="FA Women's Super League", gender=<Gender.FEMALE: 'female'>, country_name='England')

>>> competitions[0].season
Season(id=42, name='2019/2020')

>>> competitions[0].match_updated, competitions[0].match_available
(datetime.datetime(2020, 3, 11, 14, 9, 41, 932138),
 datetime.datetime(2020, 3, 11, 14, 9, 41, 932138))

>>> # Or extract individual objects from the API response
>>> set(statsbombapi.extract(statsbombapi.Competition, competitions))
{Competition(id=11, name='La Liga', gender=<Gender.MALE: 'male'>, country_name='Spain'),
 Competition(id=37, name="FA Women's Super League", gender=<Gender.FEMALE: 'female'>, country_name='England'),
 Competition(id=43, name='FIFA World Cup', gender=<Gender.MALE: 'male'>, country_name='International'),
 Competition(id=49, name='NWSL', gender=<Gender.FEMALE: 'female'>, country_name='United States of America'),
 Competition(id=72, name="Women's World Cup", gender=<Gender.FEMALE: 'female'>, country_name='International')}

>>> set(statsbombapi.extract(statsbombapi.Season, competitions))
{Season(id=1, name='2017/2018'),
 Season(id=2, name='2016/2017'),
 Season(id=21, name='2009/2010'),
 Season(id=22, name='2010/2011'),
 Season(id=23, name='2011/2012'),
 Season(id=24, name='2012/2013'),
 Season(id=25, name='2013/2014'),
 Season(id=26, name='2014/2015'),
 Season(id=27, name='2015/2016'),
 Season(id=3, name='2018'),
 Season(id=30, name='2019'),
 Season(id=37, name='2004/2005'),
 Season(id=38, name='2005/2006'),
 Season(id=39, name='2006/2007'),
 Season(id=4, name='2018/2019'),
 Season(id=40, name='2007/2008'),
 Season(id=41, name='2008/2009'),
 Season(id=42, name='2019/2020')}

Matches

>>> matches = api.matches(competition_id=37, season_id=42)

>>> # You can use the `extract` function to find items of any relevant type,
>>> # even if they are nested to arbitrary depth
>>> teams = set(statsbombapi.extract(statsbombapi.Team, matches))
>>> countries = set(statsbombapi.extract(statsbombapi.Country, matches))
>>> referees = set(statsbombapi.extract(statsbombapi.Referee, matches))

Lineups

>>> lineups = api.lineups(match_id=2275086)

>>> # Same as before...
>>> players = set(statsbombapi.extract(statsbombapi.Player, lineups))
>>> list(players)[0]
Player(id=15616, name='Kim Little', birth_date=None, gender=None, height=None, weight=None,
 country=Country(id=201, name='Scotland'), nickname=None)

Events

>>> # Last, but certainly not least
>>> events = api.events(match_id=2275086)
>>> events[224]
Event(id=UUID('8b7f985e-2fa5-4b08-9893-0d1b77cf7076'), index=225, period=1,
 timestamp=datetime.time(0, 4, 35, 263000), minute=4, second=35,
 type=EventType(id=43, name='Carry'), possession=13,
 possession_team=Team(id=968, name='Arsenal WFC', gender=None, country=None),
 play_pattern=PlayPattern(id=4, name='From Throw In'),
 team=Team(id=968, name='Arsenal WFC', gender=None, country=None),
 duration=0.444403, related_events=[UUID('7eed3cb4-b02c-4ddb-bb98-1526cd4c89d5'), UUID('8af13ea5-1b32-4ea2-91fd-93756979744d')],
 location=[28.6, 20.8], under_pressure=None, off_camera=None, out=None,
 player=Player(id=10405, name='Lia Wälti', birth_date=None, gender=None, height=None, weight=None, country=None, nickname=None),
 position=Position(id=2, name='Right Back'), tactics=None, counterpress=None,
 fifty_fifty=None, bad_behaviour=None, ball_receipt=None, ball_recovery=None,
 block=None, carry=Carry(end_location=[28.6, 20.8]), clearance=None, dribble=None,
 dribbled_past=None, duel=None, foul_committed=None, foul_won=None, goalkeeper=None,
 half_end=None, half_start=None, injury_stoppage=None, interception=None,
 miscontrol=None, pass_=None, player_off=None, pressure=None, shot=None, substitution=None)

Configuration and extensibility

If you don't want to use dataclasses, statsbombapi provides an extensible API client to enable you to fetch StatsBomb data in whatever format you want, from whichever source you want.

Loaders and Decoders

The API Client is composed of a loader and a decoder:

  • The loader takes fetches StatsBomb data from some data source. For example, the StatsBomb API, or the StatsBomb Open Data repo.
  • The decoder converts the statsbomb data into the desired format. For example, JSON, or dataclasses.
client = statsbombapi.StatsbombPublic()

# Is equivalent to
client = statsbombapi.APIClient(
  loader=statsbombapi.loaders.OpenDataLoader(),
  decoder=statsbombapi.decoders.DataclassDecoder()
)

Alternative decoders can be used to return data in a different format:

json_client = statsbombapi.APIClient(
  loader=statsbombapi.loaders.OpenDataLoader(),
  decoder=statsbombapi.decoders.JsonDecoder()
)

# You can also supply the decoder to the pre-defined clients
json_client = statsbombapi.StatsbombPublic(
  decoder=statsbombapi.decoders.JsonDecoder()
)

json_client = statsbombapi.StatsbombAPI(
  username='...',
  password='...',
  decoder=statsbombapi.decoders.JsonDecoder()
)

You can use this interface to use own custom decoders. For example, you might want to return data as pandas DataFrames:

import pandas as pd

dataframe_decoder = statsbombapi.decoders.CompositeDecoder(
  # The default loader returns the object as bytes, so we need
  # to chain together two decoders using `CompositeDecoder`.
  # The first (`JsonDecoder`) uses json.decode to decode the API response into
  # Python objects (lists and dicts)
  statsbombapi.decoders.JsonDecoder(),
  # The second uses the `pd.DataFrame` constructor on the output of 4 API routes
  # (after they've been decoded by `JsonDecoder`)
  statsbombapi.decoders.UniformDecoder(pd.DataFrame)
)

df_client = statsbombapi.StatsbombPublic(
  decoder=dataframe_decoder
)

>>> print(df_client.events(match_id=2275086))
                                        id  index  period     timestamp  minute  second  ...
0     098da6e7-be60-4e70-8567-916873b0ba15      1       1  00:00:00.000       0       0  ...
1     7ef1ced6-7044-4788-a7b7-d9d669071ecd      2       1  00:00:00.000       0       0  ...
2     9e1da46b-dccc-4382-9603-d1fc1203b041      3       1  00:00:00.000       0       0  ...
3     a5f24a50-053f-4c18-920d-5e70471e31c4      4       1  00:00:00.000       0       0  ...
4     b3394890-ef26-4709-b00c-bcba2985a4cc      5       1  00:00:00.512       0       0  ...
...                                    ...    ...     ...           ...     ...     ...  ...
3260  0623b1ff-742e-4ee7-9c85-f27bee25c761   3261       2  00:49:32.803      94      32  ...
3261  69ab6703-a024-44b9-9883-05b19586be86   3262       2  00:49:32.930      94      32  ...
3262  34f79b82-e513-4ab5-9393-9f4e223f7ed4   3263       2  00:49:33.326      94      33  ...
3263  a3907011-3386-4578-a910-51cfa5bb5773   3264       2  00:49:33.738      94      33  ...
3264  70f30ecb-b85d-48d9-83bc-f62e1613dc3f   3265       2  00:49:33.738      94      33  ...

You can use the APIClient class to configure the loader, too. For example, you might want to load from disk (statsbombapi.LocalLoader). Or, you might define a custom loader to (for example) cache data locally, or pull data from s3.

Yet another statsbomb API package?!

Yes! statsbombapi aims to make it easier to extract and parse statsbomb data with the use of dataclasses.

There are some great pre-existing packages for working with statsbomb data:

These are primarily built around fetching StatsBomb data as dataframes. This is great for interactive work (for example, in a jupyter notebook) and you should definitely consider whether they match your use-case.

However, I have found that this approach sometimes isn't ideal when developing data pipelines and doing ETL. By parsing data from the StatsBomb API into specific data structures, I hope that this package can make these situations easier.

Development

Testing

Run tests with pytest test.

About

An extendable Statsbomb API wrapper for data-pipelines

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages