A machine learning project that detects and classifies 9 types of fruits using YOLOv8 object detection.
- Apple
- Banana
- Cherry
- Chickoo
- Grapes
- Kiwi
- Mango
- Orange
- Strawberry
- Total images: 332
- Annotated for training: 64 images
- Tool used: Roboflow
- Architecture: YOLOv8 Nano
- Framework: Ultralytics
- Training device: Apple M3 (MPS)
- Epochs: 50
fruit_detection_project/
├── scripts/
│ ├── 1_explore_dataset.py
│ ├── 2_select_images.py
│ ├── 4_train_model.py
│ └── test_custom_image.py
└── runs/detect/fruit_detector/
└── weights/best.pt
python3 scripts/4_train_model.pypython3 scripts/test_custom_image.pypip install ultralytics opencv-pythonModel trained on 64 annotated images with transfer learning from YOLOv8n pretrained weights.