Skip to content

Commit

Permalink
Merge pull request #244 from UW-Hydro/develop
Browse files Browse the repository at this point in the history
Update for 2.4
  • Loading branch information
arbennett authored Oct 8, 2020
2 parents 62b1209 + ac27663 commit ca2f8ff
Show file tree
Hide file tree
Showing 8 changed files with 159 additions and 9 deletions.
5 changes: 5 additions & 0 deletions docs/configuration.rst
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,11 @@ the ``forcing`` entry. Can be one of the following: ``ascii``, ``binary``,

**Optional Variables**

``method ::str``: The method to use for estimation of meteorological quantities.
This can be either ``mtclim`` to estimate missing variables or ``passthrough`` if
some of the meteorological variables have already been estimated (for example, by
DayMet, PRISM, or GridMET). Defaults to ``mtclim``.

``out_prefix :: str``: The output file base name. Defaults to ``forcing``.

``out_precision :: str``: Precision to use when writing output. Defaults to
Expand Down
12 changes: 12 additions & 0 deletions docs/whats-new.rst
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,18 @@
What's New
==========

.. _whats-new.2.4.0:

v2.4.0
------
Enchancements
~~~~~~~~~~~~~
- Allow for passing already estimated met variables
(such as shortwave and/or longwave radiation)
through to the disaggregation routines. This
functionality can be accessed by setting the
``method`` to ``passthrough`` in the configuration

.. _whats-new.2.3.0:

v2.3.3
Expand Down
Binary file added metsim/data/passthrough.nc
Binary file not shown.
22 changes: 18 additions & 4 deletions metsim/disaggregate.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,9 +105,13 @@ def disaggregate(df_daily: pd.DataFrame, params: dict,

df_disagg['tskc'] = tskc(df_daily['tskc'].values, ts, params)

if 'longwave' in df_daily:
daily_lw = df_daily['longwave']
else:
daily_lw = None
df_disagg['longwave'] = longwave(
df_disagg['temp'].values, df_disagg['vapor_pressure'].values,
df_disagg['tskc'].values, params)
df_disagg['tskc'].values, params, daily_lw)
df_disagg['prec'] = prec(df_daily['prec'], df_daily['t_min'], ts, params,
df_daily.get('t_pk'), df_daily.get('dur'))

Expand Down Expand Up @@ -478,7 +482,7 @@ def vapor_pressure(vp_daily: np.array, temp: np.array, t_t_min: np.array,


def longwave(air_temp: np.array, vapor_pressure: np.array,
tskc: np.array, params: dict) -> np.array:
tskc: np.array, params: dict, daily_lw=None) -> np.array:
"""
Calculate longwave. This calculation can be performed
using a variety of parameterizations for both the
Expand Down Expand Up @@ -569,6 +573,13 @@ def longwave(air_temp: np.array, vapor_pressure: np.array,
emiss_func = cloud_calc[params['lw_cloud'].upper()]
emissivity = emiss_func(emissivity_clear, tskc)
lwrad = emissivity * cnst.STEFAN_B * np.power(air_temp, 4)
if daily_lw is not None:
ts = int(params['time_step'])
ts_per_day = int(cnst.HOURS_PER_DAY * cnst.MIN_PER_HOUR / ts)
factor = np.mean(lwrad.reshape(-1, ts_per_day), axis=1).flatten()
factor = daily_lw.values / factor
factor = np.repeat(factor, ts_per_day)
lwrad *= factor
return lwrad


Expand Down Expand Up @@ -623,14 +634,17 @@ def shortwave(sw_rad: np.array, daylength: np.array, day_of_year: np.array,
"""
ts = int(params['time_step'])
ts_hourly = float(ts) / cnst.MIN_PER_HOUR
tmp_rad = (sw_rad * daylength) / (cnst.SEC_PER_HOUR * ts_hourly)
if params['method'] == 'mtclim' or params.get('sw_averaging', '') == 'daylight':
tmp_rad = (sw_rad * daylength) / (cnst.SEC_PER_HOUR * ts_hourly)
else:
tmp_rad = sw_rad * 24
n_days = len(tmp_rad)
ts_per_day = int(cnst.HOURS_PER_DAY * cnst.MIN_PER_HOUR / ts)
disaggrad = np.zeros(int(n_days * ts_per_day))
rad_fract_per_day = int(cnst.SEC_PER_DAY / cnst.SW_RAD_DT)
tmp_rad = np.repeat(tmp_rad, rad_fract_per_day)
if params['utc_offset']:
utc_offset = int((params['lon'] / cnst.DEG_PER_REV) * rad_fract_per_day)
utc_offset = int((params['lon'] / cnst.DEG_PER_REV) * rad_fract_per_day)
tiny_rad_fract = np.roll(tiny_rad_fract.flatten(), -utc_offset)
tmp_rad = np.roll(tmp_rad.flatten(), -utc_offset)
tiny_rad_fract = tiny_rad_fract.flatten()
Expand Down
46 changes: 46 additions & 0 deletions metsim/methods/passthrough.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
"""
Passthrough
"""
# Meteorology Simulator
# Copyright (C) 2017 The Computational Hydrology Group, Department of Civil
# and Environmental Engineering, University of Washington.

# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.

# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.

# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

import numpy as np
import pandas as pd

import metsim.constants as cnst
from metsim.physics import atm_pres, calc_pet, svp
from metsim.methods.mtclim import t_day, tfmax, tskc, pet, tdew, vapor_pressure

def run(df, params):
assert 'shortwave' in df

if 't_day' not in df:
df['t_day'] = t_day(df['t_min'].values, df['t_max'].values, params)
if 'tfmax' not in df:
df['tfmax'] = tfmax(df['dtr'].values, df['smoothed_dtr'].values,
df['prec'].values, params)
if 'tskc' not in df:
df['tskc'] = tskc(df['tfmax'].values, params)
if 'pet' not in df:
df['pet'] = pet(df['shortwave'].values, df['t_day'].values,
df['daylength'].values, params)
if 'tdew' not in df:
df['tdew'] = tdew(df['pet'].values, df['t_min'].values,
df['seasonal_prec'].values, df['dtr'].values)
if 'vapor_pressure' not in df:
df['vapor_pressure'] = vapor_pressure(df['tdew'].values)
return df
18 changes: 13 additions & 5 deletions metsim/metsim.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@
from metsim import io
from metsim.datetime import date_range
from metsim.disaggregate import disaggregate
from metsim.methods import mtclim
from metsim.methods import mtclim, passthrough
from metsim.physics import solar_geom
from metsim.units import converters

Expand Down Expand Up @@ -104,6 +104,9 @@
'rel_humid': {'units': '%', 'long_name': 'relative humidity',
'standard_name': 'relative_humidity',
'missing_value': np.nan, 'fill_value': np.nan},
'daylength': {'units': 's', 'long_name': 'daylength',
'standard_name': 'length of day',
'missing_value': np.nan, 'fill_value': np.nan},
'spec_humid': {'units': 'g g-1', 'long_name': 'specific humidity',
'standard_name': 'specific_humidity',
'missing_value': np.nan, 'fill_value': np.nan},
Expand Down Expand Up @@ -131,7 +134,7 @@ class MetSim(object):
"""

# Class variables
methods = {'mtclim': mtclim}
methods = {'mtclim': mtclim, 'passthrough': passthrough}
params = {
"period_ending": False,
"is_worker": False,
Expand Down Expand Up @@ -474,7 +477,6 @@ def run_slice(self):
locs = {d: i for d, i in zip(self.domain['mask'].dims, index)}
else:
continue

df, state = wrap_run_cell(self.method.run, params,
self.met_data.isel(**locs),
self.state.isel(**locs),
Expand Down Expand Up @@ -654,7 +656,7 @@ def _validate_setup(self):

# Check output variables are valid
daily_out_vars = ['t_min', 't_max', 't_day', 'prec', 'vapor_pressure',
'shortwave', 'tskc', 'pet', 'wind']
'shortwave', 'tskc', 'pet', 'wind', 'daylength']
out_var_check = ['temp', 'prec', 'shortwave', 'vapor_pressure',
'air_pressure', 'rel_humid', 'spec_humid',
'longwave', 'tskc', 'wind']
Expand Down Expand Up @@ -778,7 +780,13 @@ def wrap_run_cell(func: callable, params: dict,
# If we're outputting daily values, we dont' need to
# change the output dates - see inside of `if` condition
# above for more explanation
new_times = out_times
start = out_times.values[0]
stop = (out_times.values[-1] + pd.Timedelta('1 days') -
pd.Timedelta("{} minutes".format(params['time_step'])))
new_times = date_range(
start, stop, freq='{}T'.format(params['time_step']),
calendar=params['calendar'])
df_base.index = new_times
df_complete = df_base

# Cut the returned data down to the correct time index
Expand Down
62 changes: 62 additions & 0 deletions metsim/tests/test_metsim.py
Original file line number Diff line number Diff line change
Expand Up @@ -277,6 +277,68 @@ def test_variable_rename():
assert 'SWRadAtm' in ds.variables


def test_passthrough():
"""Test to make sure passing through previously estimated
variables doesn't alter the values from disaggregation"""
loc = data_locations['binary']
data_files = [os.path.join(loc, f) for f in os.listdir(loc)]
out_dir = '.'
params = {'start': dates['binary'][0],
'stop': dates['binary'][1],
'forcing_fmt': 'binary',
'domain_fmt': 'netcdf',
'state_fmt': 'netcdf',
'domain': './metsim/data/stehekin.nc',
'state': './metsim/data/state_vic.nc',
'forcing': data_files,
'method': 'mtclim',
'scheduler': 'threading',
'time_step': "60",
'out_dir': out_dir,
'out_state': os.path.join(out_dir, 'state.nc'),
'out_vars': {'prec': {'out_name': 'prec'},
'temp': {'out_name': 'temp'},
'longwave': {'out_name': 'longwave'},
'vapor_pressure': {'out_name': 'vapor_pressure'},
'shortwave': {'out_name': 'shortwave'}},
'forcing_vars': in_vars_section['binary'],
'domain_vars': domain_section['binary']}

# Second run will be to use mtclim and hourly disagg
params1 = dict()
params1.update(params)
params1['out_prefix'] = 'mtclim'
ms1 = MetSim(params1)
ms1.run()
with ms1.open_output() as ds:
mtclim_ds = ds.load()

# Third run will be to use passthrough and hourly disagg
# with input data from teh first run
params2 = dict()
params2.update(params)
params2['method'] = 'passthrough'
params2['out_prefix'] = 'passthrough'
params2['forcing_vars'] = OrderedDict(
prec='prec', t_max='t_max', t_min='t_min',
wind='wind', shortwave='shortwave', vapor_pressure='vapor_pressure')
params2['forcing_fmt'] = 'netcdf'
params2['forcing'] = './metsim/data/passthrough.nc'
ms2 = MetSim(params2)
ms2.run()
with ms2.open_output() as ds:
passthrough_ds = ds.load()

tol = 1e-4
assert np.allclose(passthrough_ds['shortwave'].mean(),
mtclim_ds['shortwave'].mean(), atol=tol)
assert np.allclose(passthrough_ds['vapor_pressure'].mean(),
mtclim_ds['vapor_pressure'].mean(), atol=tol)
assert np.allclose(passthrough_ds['longwave'].mean(),
mtclim_ds['longwave'].mean(), atol=tol)



def test_unit_conversion():
"""Tests to make sure that variable renaming works"""
loc = data_locations['binary']
Expand Down
3 changes: 3 additions & 0 deletions metsim/units.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,5 +52,8 @@
},
'wind': {
'm s-1': lambda x, ts: x,
},
'daylength': {
's': lambda x, ts: x,
}
}

0 comments on commit ca2f8ff

Please sign in to comment.