Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 1 addition & 8 deletions src/category-theory/functors-precategories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -278,14 +278,7 @@ module _
equiv-ap-emb
( comp-emb
( emb-subtype (is-functor-prop-map-Precategory C D))
( emb-equiv
( inv-associative-Σ
( obj-Precategory C → obj-Precategory D)
( λ F₀ →
{ x y : obj-Precategory C} →
hom-Precategory C x y →
hom-Precategory D (F₀ x) (F₀ y))
( pr1 ∘ is-functor-prop-map-Precategory C D))))
( emb-equiv inv-associative-Σ))

eq-map-eq-functor-Precategory :
(F = G) → (map-functor-Precategory C D F = map-functor-Precategory C D G)
Expand Down
12 changes: 2 additions & 10 deletions src/category-theory/functors-set-magmoids.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -231,16 +231,8 @@ module _
equiv-eq-map-eq-functor-Set-Magmoid =
equiv-ap-emb
( comp-emb
( emb-subtype
( preserves-comp-hom-prop-map-Set-Magmoid A B))
( emb-equiv
( inv-associative-Σ
( obj-Set-Magmoid A → obj-Set-Magmoid B)
( λ F₀ →
{ x y : obj-Set-Magmoid A} →
hom-Set-Magmoid A x y →
hom-Set-Magmoid B (F₀ x) (F₀ y))
( preserves-comp-hom-map-Set-Magmoid A B))))
( emb-subtype (preserves-comp-hom-prop-map-Set-Magmoid A B))
( emb-equiv inv-associative-Σ))

eq-map-eq-functor-Set-Magmoid :
F = G → map-functor-Set-Magmoid A B F = map-functor-Set-Magmoid A B G
Expand Down
15 changes: 1 addition & 14 deletions src/category-theory/groupoids.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -151,20 +151,7 @@ module _
( λ (y , p) →
Σ ( Σ (y = x) (λ q → q ∙ p = refl))
( λ (q , l) → p ∙ q = refl)))
( ( equiv-tot
( λ y →
equiv-tot
( λ p →
associative-Σ
( y = x)
( λ q → q ∙ p = refl)
( λ (q , r) → p ∙ q = refl)))) ∘e
( associative-Σ
( type-1-Type X)
( λ y → x = y)
( λ (y , p) →
Σ ( Σ (y = x) (λ q → q ∙ p = refl))
( λ (q , l) → p ∙ q = refl))))
( equiv-tot (λ y → equiv-tot (λ p → associative-Σ)) ∘e associative-Σ)
( is-contr-iterated-Σ 2
( is-torsorial-Id x ,
( x , refl) ,
Expand Down
2 changes: 1 addition & 1 deletion src/category-theory/replete-subprecategories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -247,7 +247,7 @@ module _
( equiv-tot
( equiv-is-iso-is-iso-base-is-replete-Subprecategory
C P is-replete-P {x} {y})) ∘e
( inv-associative-Σ _ _ _) ∘e
( inv-associative-Σ) ∘e
( equiv-tot
( λ f →
( commutative-product) ∘e
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -122,23 +122,23 @@ module _
compute-structure-equiv-Set-Magmoid :
componentwise-structure-equiv-Set-Magmoid ≃ structure-equiv-Set-Magmoid A B
compute-structure-equiv-Set-Magmoid =
( inv-associative-Σ _ _ _) ∘e
( inv-associative-Σ) ∘e
( equiv-tot
( λ F₀ →
( inv-associative-Σ _ _ _) ∘e
( inv-associative-Σ) ∘e
equiv-tot (λ _ → equiv-left-swap-Σ) ∘e
( equiv-left-swap-Σ) ∘e
( equiv-tot
( λ is-equiv-F₀ →
( associative-Σ _ _ _) ∘e
( associative-Σ) ∘e
( equiv-right-swap-Σ) ∘e
( equiv-Σ-equiv-base
( λ E₁' →
preserves-comp-hom-Set-Magmoid A B F₀ (λ f → pr1 E₁' f))
( ( distributive-implicit-Π-Σ) ∘e
( equiv-implicit-Π-equiv-family
( λ _ → distributive-implicit-Π-Σ)))))))) ∘e
( associative-Σ _ _ _)
( associative-Σ)
```

### Structure equivalences of set-magmoids characterize their equality
Expand Down
6 changes: 1 addition & 5 deletions src/elementary-number-theory/falling-factorials.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -70,11 +70,7 @@ Fin-falling-factorial-ℕ (succ-ℕ n) (succ-ℕ m) =
( is-decidable-Σ-Fin
( λ x →
has-decidable-equality-Fin (map-emb f x) (inr star))))) ∘e
( ( inv-equiv
( left-distributive-Σ-coproduct
( Fin (succ-ℕ m) ↪ Fin (succ-ℕ n))
( λ f → fiber (map-emb f) (inr star))
( λ f → ¬ (fiber (map-emb f) (inr star))))) ∘e
( ( inv-equiv left-distributive-Σ-coproduct) ∘e
{!!})) ∘e
( equiv-coproduct
( Fin-falling-factorial-ℕ n m)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -206,12 +206,12 @@ equiv-coproduct-Fin-ℕ (succ-ℕ n) =
equiv-product-Fin-ℕ : (n : ℕ) → ((Fin (succ-ℕ n)) × ℕ) ≃ ℕ
equiv-product-Fin-ℕ zero-ℕ =
( left-unit-law-coproduct ℕ) ∘e
( ( equiv-coproduct (left-absorption-product ℕ) left-unit-law-product) ∘e
( right-distributive-product-coproduct empty unit ℕ))
( ( equiv-coproduct (left-absorption-product ℕ) left-unit-law-product) ∘e
( right-distributive-product-coproduct))
equiv-product-Fin-ℕ (succ-ℕ n) =
( ℕ+ℕ≃ℕ) ∘e
( ( equiv-coproduct (equiv-product-Fin-ℕ n) left-unit-law-product) ∘e
( right-distributive-product-coproduct (Fin (succ-ℕ n)) unit ℕ))
( ( equiv-coproduct (equiv-product-Fin-ℕ n) left-unit-law-product) ∘e
( right-distributive-product-coproduct))
```

### The integers `ℤ` is equivalent to `ℕ`
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -242,6 +242,6 @@ abstract
( Σ (Fin k) (B ∘ inl))
( B (inr star)) f) ∘e
( equiv-coproduct id-equiv (left-unit-law-Σ (B ∘ inr)))) ∘e
( right-distributive-Σ-coproduct (Fin k) unit B))
( right-distributive-Σ-coproduct B))
( y)))
```
Original file line number Diff line number Diff line change
Expand Up @@ -138,7 +138,7 @@ module _
( ( equiv-tot
( λ Y →
equiv-postcomp-equiv
( right-distributive-Σ-coproduct A B Y)
( right-distributive-Σ-coproduct Y)
( X))) ∘e
( left-unit-law-Σ-is-contr
( is-torsorial-equiv' (A + B))
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -83,10 +83,8 @@ module _
fundamental-theorem-id
( is-contr-equiv
( Σ A (λ x → P x × sim-equivalence-relation R a x))
( ( associative-Σ A P (λ z → sim-equivalence-relation R a (pr1 z))) ∘e
( equiv-tot
( λ t →
is-effective-class R a (pr1 t))))
( ( associative-Σ) ∘e
( equiv-tot (λ t → is-effective-class R a (pr1 t))))
( H a))
( λ y →
ap (class-representatives H) {pair a p} {y})
Expand Down
2 changes: 1 addition & 1 deletion src/foundation/coherently-invertible-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@ module _
is-proof-irrelevant-is-coherently-invertible H =
is-contr-equiv'
( _)
( associative-Σ _ _ _)
( associative-Σ)
( is-contr-Σ
( is-contr-section-is-coherently-invertible H)
( section-is-coherently-invertible H)
Expand Down
25 changes: 8 additions & 17 deletions src/foundation/coproduct-decompositions-subuniverse.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -294,23 +294,15 @@ module _
binary-coproduct-Decomposition-subuniverse P X ≃
binary-coproduct-Decomposition-subuniverse P X
equiv-commutative-binary-coproduct-Decomposition-subuniverse =
( associative-Σ
( type-subuniverse P)
( λ _ → type-subuniverse P)
( _)) ∘e
( associative-Σ) ∘e
( ( equiv-Σ
( _)
( commutative-product)
( λ x →
equiv-postcomp-equiv
( commutative-coproduct
( inclusion-subuniverse P (pr1 x))
( inclusion-subuniverse P (pr2 x)))
(inclusion-subuniverse P X))) ∘e
( ( inv-associative-Σ
( type-subuniverse P)
( λ _ → type-subuniverse P)
( _))))
( commutative-coproduct)
( inclusion-subuniverse P X))) ∘e
( inv-associative-Σ))
```

### Equivalence between iterated coproduct and ternary coproduct decomposition
Expand Down Expand Up @@ -384,7 +376,7 @@ module _
( equiv-tot
( λ x →
( ( equiv-postcomp-equiv
( commutative-coproduct _ _)
( commutative-coproduct)
( inclusion-subuniverse P X)) ∘e
( ( left-unit-law-Σ-is-contr
( is-torsorial-equiv-subuniverse' P
Expand Down Expand Up @@ -506,8 +498,7 @@ module _
( eq-type-Prop (P _)))
( eq-is-prop is-property-is-empty)))
( ( raise-empty l1 , C1) , is-empty-raise-empty)) ∘e
( ( inv-associative-Σ _ _ _) ∘e
( ( equiv-tot (λ _ → commutative-product)) ∘e
( ( associative-Σ _ _ _))))))) ∘e
( ( associative-Σ _ _ _))
( ( inv-associative-Σ) ∘e
( equiv-tot (λ _ → commutative-product) ∘e associative-Σ))))) ∘e
( associative-Σ)
```
16 changes: 1 addition & 15 deletions src/foundation/coproduct-decompositions.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -246,7 +246,7 @@ module _
( ( equiv-coproduct
( left-unit-law-Σ-is-contr ( is-contr-Fin-1) ( inr star))
( left-unit-law-Σ-is-contr is-contr-unit star)) ∘e
( ( right-distributive-Σ-coproduct ( Fin 1) unit (λ x → fiber f x) ∘e
( ( right-distributive-Σ-coproduct (λ x → fiber f x) ∘e
( inv-equiv-total-fiber f))))

compute-left-matching-correspondence-binary-coproduct-Decomposition-map-into-Fin-Two-ℕ :
Expand All @@ -272,8 +272,6 @@ module _
( inr star))
( map-left-unit-law-Σ-is-contr is-contr-unit star))
( map-right-distributive-Σ-coproduct
( Fin 1)
( unit)
( λ x → fiber f x)
( pr1 a , x , pr2 a))))
( λ z → pr1 (pr1 z) = x))
Expand Down Expand Up @@ -335,8 +333,6 @@ module _
( inr star))
( map-left-unit-law-Σ-is-contr is-contr-unit star))
( map-right-distributive-Σ-coproduct
( Fin 1)
( unit)
( λ x → fiber f x)
( pr1 a , x , pr2 a))))
( λ z → pr1 (pr1 z) = x))
Expand Down Expand Up @@ -519,8 +515,6 @@ module _
( map-left-unit-law-Σ-is-contr is-contr-Fin-1 ( inr star))
( map-left-unit-law-Σ-is-contr is-contr-unit star)
( map-right-distributive-Σ-coproduct
( Fin 1)
( unit)
( λ y → y = f x)
( f x , refl))))

Expand All @@ -543,8 +537,6 @@ module _
equiv-tot
( λ _ → extensionality-Fin 2 (inr star) (inl (inr star))))) ∘e
( ( right-distributive-Σ-coproduct
( left-summand-binary-coproduct-Decomposition d)
( right-summand-binary-coproduct-Decomposition d)
( λ y →
map-inv-equiv-binary-coproduct-Decomposition-map-into-Fin-Two-ℕ-helper
d y = inl (inr star))) ∘e
Expand Down Expand Up @@ -573,8 +565,6 @@ module _
equiv-tot
( λ _ → extensionality-Fin 2 (inr star) (inr star)))) ∘e
( ( right-distributive-Σ-coproduct
( left-summand-binary-coproduct-Decomposition d)
( right-summand-binary-coproduct-Decomposition d)
( λ y →
map-inv-equiv-binary-coproduct-Decomposition-map-into-Fin-Two-ℕ-helper
d y = inr star)) ∘e
Expand Down Expand Up @@ -612,8 +602,6 @@ module _
( λ _ →
extensionality-Fin 2 (inr star) (inl (inr star))))) ∘e
( ( right-distributive-Σ-coproduct
( left-summand-binary-coproduct-Decomposition d)
( right-summand-binary-coproduct-Decomposition d)
( λ y →
map-inv-equiv-binary-coproduct-Decomposition-map-into-Fin-Two-ℕ-helper
d y =
Expand Down Expand Up @@ -667,8 +655,6 @@ module _
equiv-tot
( λ _ → extensionality-Fin 2 (inr star) (inr star)))) ∘e
( ( right-distributive-Σ-coproduct
( left-summand-binary-coproduct-Decomposition d)
( right-summand-binary-coproduct-Decomposition d)
( λ y →
map-inv-equiv-binary-coproduct-Decomposition-map-into-Fin-Two-ℕ-helper
d y = inr star)))))
Expand Down
2 changes: 1 addition & 1 deletion src/foundation/decidable-dependent-pair-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@ is-decidable-Σ-coproduct :
is-decidable (Σ (A + B) C)
is-decidable-Σ-coproduct {A = A} {B} C dA dB =
is-decidable-equiv
( right-distributive-Σ-coproduct A B C)
( right-distributive-Σ-coproduct C)
( is-decidable-coproduct dA dB)
```

Expand Down
4 changes: 2 additions & 2 deletions src/foundation/decidable-equivalence-relations.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -513,8 +513,8 @@ equiv-Surjection-Into-Set-Decidable-Equivalence-Relation {l1} A =
( is-set-has-decidable-equality)) ∘e
( commutative-product)) ∘e
( equiv-left-swap-Σ)))) ∘e
( associative-Σ _ _ _) ∘e
( associative-Σ _ _ _) ∘e
( associative-Σ) ∘e
( associative-Σ) ∘e
( equiv-type-subtype
( λ surj →
is-prop-Π
Expand Down
3 changes: 1 addition & 2 deletions src/foundation/decidable-propositions.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -76,8 +76,7 @@ split-Decidable-Prop :
Decidable-Prop l ≃
((Σ (Prop l) type-Prop) + (Σ (Prop l) (λ Q → ¬ (type-Prop Q))))
split-Decidable-Prop {l} =
( left-distributive-Σ-coproduct (Prop l) (λ Q → pr1 Q) (λ Q → ¬ (pr1 Q))) ∘e
( inv-associative-Σ (UU l) is-prop (λ X → is-decidable (pr1 X)))
left-distributive-Σ-coproduct ∘e inv-associative-Σ
```

### The type of decidable propositions in universe level `l` is equivalent to the type of booleans
Expand Down
2 changes: 1 addition & 1 deletion src/foundation/disjunction.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -346,7 +346,7 @@ module _
where

swap-disjunction : disjunction-type A B → disjunction-type B A
swap-disjunction = map-trunc-Prop (map-commutative-coproduct A B)
swap-disjunction = map-trunc-Prop map-commutative-coproduct
```

## See also
Expand Down
2 changes: 0 additions & 2 deletions src/foundation/exclusive-disjunction.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -162,8 +162,6 @@ module _
( is-prop-type-Prop Q q q'))))) ∘e
( equiv-dependent-universal-property-coproduct (inr q =_))))) ∘e
( right-distributive-Σ-coproduct
( type-Prop P)
( type-Prop Q)
( λ x → (y : type-Prop P + type-Prop Q) → x = y))
```

Expand Down
4 changes: 0 additions & 4 deletions src/foundation/exclusive-sum.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -250,8 +250,6 @@ module _
( pr1 (standard-unordered-pair P Q))
( inl (inr y))))))))))) ∘e
( ( right-distributive-Σ-coproduct
( Fin 0)
( unit)
( λ x →
( type-Prop (pr2 (standard-unordered-pair P Q) (inl x))) ×
( ¬ ( type-Prop
Expand All @@ -278,8 +276,6 @@ module _
( pr1 (standard-unordered-pair P Q))
( inr y)))))))))) ∘e
( right-distributive-Σ-coproduct
( Fin 1)
( unit)
( λ x →
( type-Prop (pr2 (standard-unordered-pair P Q) x)) ×
( ¬ ( type-Prop
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -118,10 +118,7 @@ module _
( Σ ( Σ ( block-partition P)
( λ B → is-in-block-partition P B x))
( λ B → is-in-block-partition P (pr1 B) y))
( associative-Σ
( block-partition P)
( λ U → is-in-block-partition P U x)
( λ U → is-in-block-partition P (pr1 U) y))
( associative-Σ)
( is-contr-Σ
( is-contr-block-containing-element-partition P x)
( Q , p)
Expand Down Expand Up @@ -291,10 +288,7 @@ module _
( ( left-unit-law-Σ-is-contr
( is-contr-block-containing-element-partition P a)
( center-block-containing-element-partition P a)) ∘e
( inv-associative-Σ
( block-partition P)
( λ B → is-in-block-partition P B a)
( λ B → is-in-block-partition P (pr1 B) x)))) ∘iff
( inv-associative-Σ))) ∘iff
( K x))))
( is-block-class-partition P a))

Expand Down Expand Up @@ -322,10 +316,7 @@ module _
( is-contr-block-containing-element-partition P a)
( ( make-block-partition P Q H) ,
( make-is-in-block-partition P Q H a q))) ∘e
( inv-associative-Σ
( block-partition P)
( λ B → is-in-block-partition P B a)
( λ B → is-in-block-partition P (pr1 B) x)))) ∘e
( inv-associative-Σ))) ∘e
( compute-is-in-block-partition P Q H x)))))

has-same-elements-partition-equivalence-relation-partition :
Expand Down
Loading