-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
c779bcd
commit 59b6294
Showing
1 changed file
with
105 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
import os | ||
|
||
import click | ||
import numpy as np | ||
import pandas as pd | ||
import polars as pl | ||
|
||
import acbm | ||
from acbm.config import load_config | ||
|
||
|
||
def print_stats(counts): | ||
print("Census count:", counts["census_count"].sum()) | ||
print( | ||
"ACBM count:", | ||
counts["acbm_count"].sum(), | ||
) | ||
r2 = np.corrcoef(counts["census_count"], counts["acbm_count"])[0, 1] ** 2 | ||
print("The R^2 value is: ", r2) | ||
rmse = np.sqrt((counts["census_count"] - counts["acbm_count"]).pow(2).mean()) | ||
print("The RMSE value is: ", rmse) | ||
mes = (counts["census_count"] - counts["acbm_count"]).abs().mean() | ||
print("The MAE value is: ", mes) | ||
|
||
|
||
@click.command() | ||
@click.option("--id", prompt="Run ID for stats to be generated from", type=str) | ||
def main(id: str): | ||
pd.options.mode.copy_on_write = True | ||
os.chdir(acbm.root_path) | ||
config = load_config(f"data/outputs/{id}/config.toml") | ||
trav_day = 3 | ||
spc = pl.read_parquet(config.interim_path / "leeds_people_hh.parquet") | ||
df = pl.read_parquet( | ||
config.interim_path / "matching" / "spc_with_nts_trips.parquet" | ||
).join(spc.select(["id", "pwkstat"]), on="id", how="left", coalesce=True) | ||
|
||
print( | ||
"% of people with a NTS match: {:.1%}".format( | ||
df.filter(df["nts_hh_id"].is_not_null()).unique("id").shape[0] | ||
/ df.unique("id").shape[0] | ||
) | ||
) | ||
print( | ||
"% of people with any travel day: {:.1%}".format( | ||
df.filter(pl.col("TravDay").is_not_null()).group_by("id").all().shape[0] | ||
/ df.unique("id").shape[0], | ||
) | ||
) | ||
print( | ||
"% of people with any weekday travel day: {:.1%}".format( | ||
df.group_by("id") | ||
.all() | ||
.filter( | ||
pl.lit(1).is_in(pl.col("TravDay")) | ||
| pl.lit(2).is_in(pl.col("TravDay")) | ||
| pl.lit(3).is_in(pl.col("TravDay")) | ||
| pl.lit(4).is_in(pl.col("TravDay")) | ||
| pl.lit(5).is_in(pl.col("TravDay")) | ||
) | ||
.shape[0] | ||
/ df.unique("id").shape[0], | ||
) | ||
) | ||
print( | ||
"% of people with a travel day of {}: {:.1%}".format( | ||
trav_day, | ||
df.group_by("id").all().filter(pl.lit(3).is_in(pl.col("TravDay"))).shape[0] | ||
/ df.unique("id").shape[0], | ||
) | ||
) | ||
|
||
acbm_matrix = ( | ||
pl.scan_parquet(config.output_path / "legs_with_locations.parquet") | ||
.filter(pl.col("purp").eq("work")) | ||
.unique(subset=["pid"]) | ||
.filter(pl.col("ozone").is_not_null() & pl.col("dzone").is_not_null()) | ||
.group_by(["ozone", "dzone"]) | ||
.len() | ||
.rename({"len": "acbm_count"}) | ||
.collect() | ||
) | ||
|
||
census_matrix = ( | ||
pl.scan_csv("data/external/cencus/ODWP15EW_MSOA.csv") | ||
.rename( | ||
{ | ||
"Middle layer Super Output Areas code": "ozone", | ||
"MSOA of workplace code": "dzone", | ||
} | ||
) | ||
.filter(pl.col("Place of work indicator (4 categories) code").is_in([1, 3])) | ||
.rename({"Count": "census_count"}) | ||
.group_by(["ozone", "dzone"]) | ||
.sum() | ||
.select(["ozone", "dzone", "census_count"]) | ||
.collect() | ||
) | ||
|
||
both_counts = acbm_matrix.join(census_matrix, on=["ozone", "dzone"]) | ||
print_stats(both_counts) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |