Skip to content

Commit

Permalink
Created using Colaboratory
Browse files Browse the repository at this point in the history
  • Loading branch information
pamlashi committed Mar 5, 2024
1 parent 4b2b892 commit a31110c
Showing 1 changed file with 146 additions and 0 deletions.
146 changes: 146 additions & 0 deletions PA_of_SizeAnalysis.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,146 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/github/VU-CSP/github-classroom-intro-pamlashi/blob/main/PA_of_SizeAnalysis.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "uM3giKLgbwgF"
},
"source": [
"# Analysis of the particle sizes from segmentation output\n",
"You should have an output file named `Results.csv` from FIJI/ImageJ segmentation. If you are using Google Colab to run this code, you will need to upload the file manually to Google using the `File` menu to the left. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "GTIhuJXYbva8"
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import seaborn as sns"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "mBObqOWmh2Zf"
},
"source": [
"Write code below to read the `Results.csv` file as a pandas DataFrame and store it in the object named `measurements`. Show the head of the DataFrame."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "DaYDPgcogyxz"
},
"outputs": [],
"source": [
"measurements = pd.read_csv('https://raw.githubusercontent.com/VU-CSP/improc-assignment-pamlashi/main/Results.csv?token=GHSAT0AAAAAACOYLQK6RMTNWYDT6YKESICMZPGUGFQ' , sep = ',')\n",
"measurements.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Mz-INH79g5Ks"
},
"outputs": [],
"source": [
"# Code to plot a histogram of the Area\n",
"sns.histplot(measurements['Area'])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZtcMHckuiydC"
},
"source": [
"Calculate the mean and the standard deviation of the distribution and show them below. (HINT: pandas can do this easily)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "T9lYcgiBhxUE"
},
"outputs": [],
"source": [
"# Calculate mean\n",
"print(measurements['Area'].mean())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "UEgg0XZdi_76"
},
"outputs": [],
"source": [
"# Calculate standard deviation\n",
"print(measurements['Area'].std())"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "pE62XfF4kgwJ"
},
"source": [
"#### Describe your interpretation of the distribution of the measurements of nuclear area below.\n",
"Based on what you see, would you choose different value ranges of particle sizes for counting? Explain why.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jjaN302xvVak"
},
"source": []
}
],
"metadata": {
"colab": {
"private_outputs": true,
"provenance": [],
"include_colab_link": true
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

0 comments on commit a31110c

Please sign in to comment.