Python code accompanying ISIMIP3a burned area attribution. (updated August 2024)
Chantelle Burton & Seppe Lampe
Full author list: Chantelle Burton1 and Seppe Lampe1 2, Douglas I. Kelley, Wim Thiery, Stijn Hantson, Nikos Christidis, Lukas Gudmundsson, Matthew Forrest, Eleanor Burke, Jinfeng Chang, Huilin Huang, Akihiko Ito, Sian Kou-Giesbrecht, Gitta Lasslop, Wei Li, Lars Nieradzik, Fang Li, Yang Chen, Jim Randerson, Christopher P.O. Reyer & Matthias Mengel
1 Equal contribution
2 Corresponding author: seppe.lampe@vub.be
Article under review. Preprint available.
This repository contains 5 notebooks that contain the entire workflow of our analysis.
We make use of two observational burned area datasets, FireCCI5.1 and GFED5. We also use simulations by seven models of the ISIMIP framework.
-
Navigate to a desired directory and clone this repository (in terminal)
git clone https://github.com/SeppeLampe/Global-Burned-Area-Increasingly-Explained-By-Climate-Change.git
-
Download the data in the corresponding folders
Download the FireCCI5.1 filestructure to Data\Observations\FireCCI5.1\Original.
Download the GFED5 filestructure to Data\Observations\GFED5\Original.
Download the ISIMIP3a Fire Sector OutputData to Data\ISIMIP\OutputData\fire. -
Create a new conda environment
conda env create --file=environment.yml
-
Launch Jupyter Lab
jupyter lab