Skip to content

VUB-HYDR/Global-Burned-Area-Increasingly-Explained-By-Climate-Change

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Global Burned Area Increasingly Explained By Climate Change

DOI

Python code accompanying ISIMIP3a burned area attribution. (updated August 2024)

Chantelle Burton & Seppe Lampe

Full author list: Chantelle Burton1 and Seppe Lampe1 2, Douglas I. Kelley, Wim Thiery, Stijn Hantson, Nikos Christidis, Lukas Gudmundsson, Matthew Forrest, Eleanor Burke, Jinfeng Chang, Huilin Huang, Akihiko Ito, Sian Kou-Giesbrecht, Gitta Lasslop, Wei Li, Lars Nieradzik, Fang Li, Yang Chen, Jim Randerson, Christopher P.O. Reyer & Matthias Mengel

1 Equal contribution

2 Corresponding author: seppe.lampe@vub.be

Article under review. Preprint available.

Code availability

This repository contains 5 notebooks that contain the entire workflow of our analysis.

We make use of two observational burned area datasets, FireCCI5.1 and GFED5. We also use simulations by seven models of the ISIMIP framework.

How to run this code

  1. Navigate to a desired directory and clone this repository (in terminal)

    git clone https://github.com/SeppeLampe/Global-Burned-Area-Increasingly-Explained-By-Climate-Change.git
    
  2. Download the data in the corresponding folders

    Download the FireCCI5.1 filestructure to Data\Observations\FireCCI5.1\Original.
    Download the GFED5 filestructure to Data\Observations\GFED5\Original.
    Download the ISIMIP3a Fire Sector OutputData to Data\ISIMIP\OutputData\fire.

  3. Create a new conda environment

    conda env create --file=environment.yml
    
  4. Launch Jupyter Lab

    jupyter lab
    

About

ISIMIP3a Burned Area Detection and Attribution

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages