Skip to content

Commit

Permalink
An example for GrowingReg
Browse files Browse the repository at this point in the history
  • Loading branch information
VainF committed Jul 21, 2023
1 parent 70c277d commit 12713d0
Showing 1 changed file with 12 additions and 4 deletions.
16 changes: 12 additions & 4 deletions benchmarks/readme.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,8 +14,9 @@ A Prunability Benchmark is available at [benchmarks/prunability](prunability)
| HRank [[6]](#6) | 93.26 | 92.17 | -0.09 |2.00x |
| SFP [[7]](#7) | 93.59 | 93.36 | -0.23 |2.11x |
| ResRep [[8]](#8) | 93.71 | 93.71 | +0.00 |2.12x |
| Ours-L1 | 93.53 | 92.93 | -0.60 | 2.12x |
| Ours-BN | 93.53 | 93.29 | -0.24 | 2.12x |
| Group-L1 | 93.53 | 92.93 | -0.60 | 2.12x |
| Group-BN | 93.53 | 93.29 | -0.24 | 2.12x |
| Group-GReg | 93.53 | 93.55 | +0.02 | 2.12x |
| Ours w/o SL | 93.53 | 93.46 | -0.07 | 2.11x |
| **Ours** | 93.53 | **93.77** | +0.38 | 2.13x |
||
Expand Down Expand Up @@ -49,20 +50,27 @@ python main.py --mode pretrain --dataset cifar10 --model resnet56 --lr 0.1 --tot

### 1.2 CIFAR-10 Pruning

#### - L1-Norm Pruner
#### - L1-Norm Pruner (Group-L1)
A group-level pruner adapted from [Pruning Filters for Efficient ConvNets](https://arxiv.org/abs/1608.08710)
```bash
# 2.11x
python main.py --mode prune --model resnet56 --batch-size 128 --restore </path/to/pretrained/model> --dataset cifar10 --method l1 --speed-up 2.11 --global-pruning
```

#### - BN Pruner
#### - BN Pruner (Group-BN)
A group-level pruner adapted from [Learning Efficient Convolutional Networks through Network Slimming](https://arxiv.org/abs/1708.06519)
```bash
# 2.11x
python main.py --mode prune --model resnet56 --batch-size 128 --restore </path/to/pretrained/model> --dataset cifar10 --method slim --speed-up 2.11 --global-pruning --reg 1e-5
```

#### - Growing Regularization (Group-GReg)
A group-level pruner adapted from [Neural Pruning via Growing Regularization](https://arxiv.org/abs/2012.09243)
```bash
# 2.11x
python main.py --mode prune --model resnet56 --batch-size 128 --restore </path/to/pretrained/model> --dataset cifar10 --method growing_reg --speed-up 2.11 --global-pruning --reg 1e-4 --delta_reg 1e-5
```

#### - Group Pruner (This Work)
```bash
# 2.11x without sparse learning (Ours w/o SL)
Expand Down

0 comments on commit 12713d0

Please sign in to comment.