-
Notifications
You must be signed in to change notification settings - Fork 340
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
12 changed files
with
469 additions
and
89 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
323 changes: 323 additions & 0 deletions
323
examples/torchvision_models/torchvision_pruning_test.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,323 @@ | ||
import os, sys | ||
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))))) | ||
|
||
from torchvision.models.resnet import ( | ||
resnext50_32x4d, | ||
resnext101_32x8d, | ||
) | ||
|
||
# torchvision==0.13.1 | ||
from torchvision.models.vision_transformer import ( | ||
vit_b_16, | ||
vit_b_32, | ||
vit_l_16, | ||
vit_l_32, | ||
vit_h_14, | ||
) | ||
########################################### | ||
# Prunable Models | ||
############################################ | ||
from torchvision.models.detection.ssdlite import ssdlite320_mobilenet_v3_large | ||
from torchvision.models.detection.ssd import ssd300_vgg16 | ||
from torchvision.models.detection.faster_rcnn import ( | ||
fasterrcnn_resnet50_fpn, | ||
fasterrcnn_resnet50_fpn_v2, | ||
fasterrcnn_mobilenet_v3_large_320_fpn, | ||
fasterrcnn_mobilenet_v3_large_fpn | ||
) | ||
from torchvision.models.detection.fcos import fcos_resnet50_fpn | ||
from torchvision.models.detection.keypoint_rcnn import keypointrcnn_resnet50_fpn | ||
from torchvision.models.detection.mask_rcnn import maskrcnn_resnet50_fpn_v2 | ||
from torchvision.models.detection.retinanet import retinanet_resnet50_fpn_v2 | ||
from torchvision.models.alexnet import alexnet | ||
|
||
from torchvision.models.vision_transformer import ( | ||
vit_b_16, | ||
vit_b_32, | ||
vit_l_16, | ||
vit_l_32, | ||
vit_h_14, | ||
) | ||
|
||
from torchvision.models.convnext import ( | ||
convnext_tiny, | ||
convnext_small, | ||
convnext_base, | ||
convnext_large, | ||
) | ||
|
||
from torchvision.models.densenet import ( | ||
densenet121, | ||
densenet169, | ||
densenet201, | ||
densenet161, | ||
) | ||
from torchvision.models.efficientnet import ( | ||
efficientnet_b0, | ||
efficientnet_b1, | ||
efficientnet_b2, | ||
efficientnet_b3, | ||
efficientnet_b4, | ||
efficientnet_b5, | ||
efficientnet_b6, | ||
efficientnet_b7, | ||
efficientnet_v2_s, | ||
efficientnet_v2_m, | ||
efficientnet_v2_l, | ||
) | ||
from torchvision.models.googlenet import googlenet | ||
from torchvision.models.inception import inception_v3 | ||
from torchvision.models.mnasnet import mnasnet0_5, mnasnet0_75, mnasnet1_0, mnasnet1_3 | ||
from torchvision.models.mobilenetv2 import mobilenet_v2 | ||
from torchvision.models.mobilenetv3 import mobilenet_v3_large, mobilenet_v3_small | ||
from torchvision.models.regnet import ( | ||
regnet_y_400mf, | ||
regnet_y_800mf, | ||
regnet_y_1_6gf, | ||
regnet_y_3_2gf, | ||
regnet_y_8gf, | ||
regnet_y_16gf, | ||
regnet_y_32gf, | ||
regnet_y_128gf, | ||
) | ||
from torchvision.models.resnet import ( | ||
resnet18, | ||
resnet34, | ||
resnet50, | ||
resnet101, | ||
resnet152, | ||
resnext50_32x4d, | ||
resnext101_32x8d, | ||
wide_resnet50_2, | ||
wide_resnet101_2, | ||
) | ||
from torchvision.models.segmentation import ( | ||
fcn_resnet50, | ||
fcn_resnet101, | ||
deeplabv3_resnet50, | ||
deeplabv3_resnet101, | ||
deeplabv3_mobilenet_v3_large, | ||
lraspp_mobilenet_v3_large, | ||
) | ||
from torchvision.models.squeezenet import squeezenet1_0, squeezenet1_1 | ||
from torchvision.models.vgg import ( | ||
vgg11, | ||
vgg13, | ||
vgg16, | ||
vgg19, | ||
vgg11_bn, | ||
vgg13_bn, | ||
vgg16_bn, | ||
vgg19_bn, | ||
) | ||
|
||
|
||
|
||
########################################### | ||
# Failue cases in this script | ||
############################################ | ||
from torchvision.models.optical_flow import raft_large | ||
from torchvision.models.swin_transformer import swin_t, swin_s, swin_b # TODO: support Swin ops | ||
from torchvision.models.shufflenetv2 import ( # TODO: support channel shuffling | ||
shufflenet_v2_x0_5, | ||
shufflenet_v2_x1_0, | ||
shufflenet_v2_x1_5, | ||
shufflenet_v2_x2_0, | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
|
||
entries = globals().copy() | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch_pruning as tp | ||
import random | ||
|
||
def my_prune(model, example_inputs, output_transform, model_name): | ||
|
||
from torchvision.models.vision_transformer import VisionTransformer | ||
from torchvision.models.convnext import CNBlock, ConvNeXt | ||
|
||
device = 'cuda' if torch.cuda.is_available() else 'cpu' | ||
ori_size = tp.utils.count_params(model) | ||
model.cpu().eval() | ||
ignored_layers = [] | ||
for p in model.parameters(): | ||
p.requires_grad_(True) | ||
######################################### | ||
# Ignore unprunable modules | ||
######################################### | ||
for m in model.modules(): | ||
if isinstance(m, nn.Linear) and m.out_features == 1000: | ||
ignored_layers.append(m) | ||
#elif isinstance(m, nn.modules.linear.NonDynamicallyQuantizableLinear): | ||
# ignored_layers.append(m) # this module is used in Self-Attention | ||
if 'ssd' in model_name: | ||
ignored_layers.append(model.head) | ||
if model_name=='raft_large': | ||
ignored_layers.extend( | ||
[model.corr_block, model.update_block, model.mask_predictor] | ||
) | ||
if 'fasterrcnn' in model_name: | ||
ignored_layers.extend([ | ||
model.rpn.head.cls_logits, model.rpn.head.bbox_pred, model.backbone.fpn, model.roi_heads | ||
]) | ||
if model_name=='fcos_resnet50_fpn': | ||
ignored_layers.extend([model.head.classification_head.cls_logits, model.head.regression_head.bbox_reg, model.head.regression_head.bbox_ctrness]) | ||
if model_name=='keypointrcnn_resnet50_fpn': | ||
ignored_layers.extend([model.rpn.head.cls_logits, model.backbone.fpn.layer_blocks, model.rpn.head.bbox_pred, model.roi_heads.box_head, model.roi_heads.box_predictor, model.roi_heads.keypoint_predictor]) | ||
if model_name=='maskrcnn_resnet50_fpn_v2': | ||
ignored_layers.extend([model.rpn.head.cls_logits, model.rpn.head.bbox_pred, model.roi_heads.box_predictor, model.roi_heads.mask_predictor]) | ||
if model_name=='retinanet_resnet50_fpn_v2': | ||
ignored_layers.extend([model.head.classification_head.cls_logits, model.head.regression_head.bbox_reg]) | ||
# For ViT: Rounding the number of channels to the nearest multiple of num_heads | ||
round_to = None | ||
#if isinstance( model, VisionTransformer): round_to = model.encoder.layers[0].num_heads | ||
channel_groups = {} | ||
if isinstance( model, VisionTransformer): | ||
for m in model.modules(): | ||
if isinstance(m, nn.MultiheadAttention): | ||
channel_groups[m] = m.num_heads | ||
|
||
######################################### | ||
# (Optional) Register unwrapped nn.Parameters | ||
# TP will automatically detect unwrapped parameters and prune the last dim for you by default. | ||
# If you want to prune other dims, you can register them here. | ||
######################################### | ||
unwrapped_parameters = None | ||
#if model_name=='ssd300_vgg16': | ||
# unwrapped_parameters=[ (model.backbone.scale_weight, 0) ] # pruning the 0-th dim of scale_weight | ||
#if isinstance( model, VisionTransformer): | ||
# unwrapped_parameters = [ (model.class_token, 0), (model.encoder.pos_embedding, 0)] | ||
#elif isinstance(model, ConvNeXt): | ||
# unwrapped_parameters = [] | ||
# for m in model.modules(): | ||
# if isinstance(m, CNBlock): | ||
# unwrapped_parameters.append( (m.layer_scale, 0) ) | ||
|
||
######################################### | ||
# Build network pruners | ||
######################################### | ||
importance = tp.importance.MagnitudeImportance(p=1) | ||
ch_sparsity = 0.2 | ||
pruner = tp.pruner.MagnitudePruner( | ||
model, | ||
example_inputs=example_inputs, | ||
importance=importance, | ||
iterative_steps=1, | ||
ch_sparsity=ch_sparsity, | ||
global_pruning=False, | ||
round_to=round_to, | ||
unwrapped_parameters=unwrapped_parameters, | ||
ignored_layers=ignored_layers, | ||
channel_groups=channel_groups, | ||
) | ||
|
||
|
||
######################################### | ||
# Pruning | ||
######################################### | ||
print("==============Before pruning=================") | ||
print("Model Name: {}".format(model_name)) | ||
print(model) | ||
|
||
layer_channel_cfg = {} | ||
for module in model.modules(): | ||
if module not in pruner.ignored_layers: | ||
#print(module) | ||
if isinstance(module, nn.Conv2d): | ||
layer_channel_cfg[module] = module.out_channels | ||
elif isinstance(module, nn.Linear): | ||
layer_channel_cfg[module] = module.out_features | ||
|
||
pruner.step() | ||
if isinstance( | ||
model, VisionTransformer | ||
): # Torchvision relies on the hidden_dim variable for forwarding, so we have to modify this varaible after pruning | ||
model.hidden_dim = model.conv_proj.out_channels | ||
print(model.class_token.shape, model.encoder.pos_embedding.shape) | ||
print("==============After pruning=================") | ||
print(model) | ||
|
||
######################################### | ||
# Testing | ||
######################################### | ||
with torch.no_grad(): | ||
if isinstance(example_inputs, dict): | ||
out = model(**example_inputs) | ||
else: | ||
out = model(example_inputs) | ||
if output_transform: | ||
out = output_transform(out) | ||
print("{} Pruning: ".format(model_name)) | ||
params_after_prune = tp.utils.count_params(model) | ||
print(" Params: %s => %s" % (ori_size, params_after_prune)) | ||
|
||
|
||
if isinstance(out, (dict,list,tuple)): | ||
print(" Output:") | ||
for o in tp.utils.flatten_as_list(out): | ||
print(o.shape) | ||
else: | ||
print(" Output:", out.shape) | ||
print("------------------------------------------------------\n") | ||
|
||
successful = [] | ||
unsuccessful = [] | ||
for model_name, entry in entries.items(): | ||
if 'swin' in model_name.lower() or 'raft' in model_name.lower() or 'shufflenet' in model_name.lower(): # stuck | ||
unsuccessful.append(model_name) | ||
continue | ||
|
||
if not callable(entry): | ||
continue | ||
if "inception" in model_name: | ||
example_inputs = torch.randn(1, 3, 299, 299) | ||
elif "raft" in model_name: | ||
example_inputs = { | ||
"image1": torch.randn(1, 3, 224, 224), | ||
"image2": torch.randn(1, 3, 224, 224), | ||
} | ||
elif 'fasterrcnn' in model_name: | ||
example_inputs = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] | ||
else: | ||
example_inputs = torch.randn(1, 3, 224, 224) | ||
|
||
if "googlenet" in model_name or "inception" in model_name: | ||
model = entry(aux_logits=False) | ||
elif "fcn" in model_name or "deeplabv3" in model_name: | ||
model = entry(aux_loss=None) | ||
elif 'fasterrcnn' in model_name: | ||
model = entry(weights_backbone=None, trainable_backbone_layers=5) # TP does not support FrozenBN. | ||
elif 'fcos' in model_name: | ||
model = entry(weights_backbone=None, trainable_backbone_layers=5) # TP does not support FrozenBN. | ||
elif 'rcnn' in model_name: | ||
model = entry(weights=None, weights_backbone=None, trainable_backbone_layers=5) # TP does not support FrozenBN. | ||
else: | ||
model = entry() | ||
|
||
if "fcn" in model_name or "deeplabv3" in model_name: | ||
output_transform = lambda x: x["out"] | ||
else: | ||
output_transform = None | ||
|
||
#try: | ||
my_prune( | ||
model, example_inputs=example_inputs, output_transform=output_transform, model_name=model_name | ||
) | ||
successful.append(model_name) | ||
#except Exception as e: | ||
# print(e) | ||
# unsuccessful.append(model_name) | ||
print("Successful Pruning: %d Models\n"%(len(successful)), successful) | ||
print("") | ||
print("Unsuccessful Pruning: %d Models\n"%(len(unsuccessful)), unsuccessful) | ||
sys.stdout.flush() | ||
|
||
print("Finished!") | ||
|
||
print("Successful Pruning: %d Models\n"%(len(successful)), successful) | ||
print("") | ||
print("Unsuccessful Pruning: %d Models\n"%(len(unsuccessful)), unsuccessful) |
Oops, something went wrong.