Skip to content

Commit

Permalink
deploy: d26bb50
Browse files Browse the repository at this point in the history
  • Loading branch information
amrit110 committed Dec 7, 2023
1 parent 7e3a601 commit 229ad68
Show file tree
Hide file tree
Showing 33 changed files with 32,111 additions and 13,084 deletions.
4 changes: 2 additions & 2 deletions 404.html
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,8 @@
<meta name="generator" content="Docusaurus v3.0.0">
<title data-rh="true">Page Not Found | CyclOps</title><meta data-rh="true" name="viewport" content="width=device-width,initial-scale=1"><meta data-rh="true" name="twitter:card" content="summary_large_image"><meta data-rh="true" property="og:url" content="https://vectorinstitute.github.io/cyclops/404.html"><meta data-rh="true" property="og:locale" content="en"><meta data-rh="true" name="docusaurus_locale" content="en"><meta data-rh="true" name="docusaurus_tag" content="default"><meta data-rh="true" name="docsearch:language" content="en"><meta data-rh="true" name="docsearch:docusaurus_tag" content="default"><meta data-rh="true" property="og:title" content="Page Not Found | CyclOps"><link data-rh="true" rel="icon" href="/cyclops/img/favicon.ico"><link data-rh="true" rel="canonical" href="https://vectorinstitute.github.io/cyclops/404.html"><link data-rh="true" rel="alternate" href="https://vectorinstitute.github.io/cyclops/404.html" hreflang="en"><link data-rh="true" rel="alternate" href="https://vectorinstitute.github.io/cyclops/404.html" hreflang="x-default"><link rel="alternate" type="application/rss+xml" href="/cyclops/blog/rss.xml" title="CyclOps RSS Feed">
<link rel="alternate" type="application/atom+xml" href="/cyclops/blog/atom.xml" title="CyclOps Atom Feed"><link rel="stylesheet" href="/cyclops/assets/css/styles.bd9f4b2a.css">
<script src="/cyclops/assets/js/runtime~main.ed9ccda4.js" defer="defer"></script>
<script src="/cyclops/assets/js/main.5ab33cdc.js" defer="defer"></script>
<script src="/cyclops/assets/js/runtime~main.29a116ab.js" defer="defer"></script>
<script src="/cyclops/assets/js/main.040305dd.js" defer="defer"></script>
</head>
<body class="navigation-with-keyboard">
<script>!function(){function t(t){document.documentElement.setAttribute("data-theme",t)}var e=function(){try{return new URLSearchParams(window.location.search).get("docusaurus-theme")}catch(t){}}()||function(){try{return localStorage.getItem("theme")}catch(t){}}();t(null!==e?e:"light")}(),function(){try{const c=new URLSearchParams(window.location.search).entries();for(var[t,e]of c)if(t.startsWith("docusaurus-data-")){var a=t.replace("docusaurus-data-","data-");document.documentElement.setAttribute(a,e)}}catch(t){}}()</script><div id="__docusaurus"><div role="region" aria-label="Skip to main content"><a class="skipToContent_fXgn" href="#__docusaurus_skipToContent_fallback">Skip to main content</a></div><nav aria-label="Main" class="navbar navbar--fixed-top"><div class="navbar__inner"><div class="navbar__items"><button aria-label="Toggle navigation bar" aria-expanded="false" class="navbar__toggle clean-btn" type="button"><svg width="30" height="30" viewBox="0 0 30 30" aria-hidden="true"><path stroke="currentColor" stroke-linecap="round" stroke-miterlimit="10" stroke-width="2" d="M4 7h22M4 15h22M4 23h22"></path></svg></button><a class="navbar__brand" href="/cyclops/"><div class="navbar__logo"><img src="/cyclops/img/cyclops_logo-dark.png" alt="CyclOps Logo" class="themedComponent_mlkZ themedComponent--light_NVdE"><img src="/cyclops/img/cyclops_logo-dark.png" alt="CyclOps Logo" class="themedComponent_mlkZ themedComponent--dark_xIcU"></div><b class="navbar__title text--truncate"></b></a><a href="https://vectorinstitute.github.io/cyclops/api" target="_self" rel="noopener noreferrer" class="navbar__item navbar__link">API</a><a href="https://vectorinstitute.github.io/cyclops/api/tutorials" target="_self" rel="noopener noreferrer" class="navbar__item navbar__link">Tutorial</a><a class="navbar__item navbar__link" href="/cyclops/blog">Blog</a></div><div class="navbar__items navbar__items--right"><a href="https://github.com/VectorInstitute/cyclops" target="_blank" rel="noopener noreferrer" class="navbar__item navbar__link">GitHub<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a><div class="navbarSearchContainer_Bca1"></div></div></div><div role="presentation" class="navbar-sidebar__backdrop"></div></nav><div id="__docusaurus_skipToContent_fallback" class="main-wrapper mainWrapper_z2l0"><main class="container margin-vert--xl"><div class="row"><div class="col col--6 col--offset-3"><h1 class="hero__title">Page Not Found</h1><p>We could not find what you were looking for.</p><p>Please contact the owner of the site that linked you to the original URL and let them know their link is broken.</p></div></div></main></div><footer class="footer footer--dark"><div class="container container-fluid"><div class="row footer__links"><div class="col footer__col"><div class="footer__title">Docs</div><ul class="footer__items clean-list"><li class="footer__item"><a href="https://vectorinstitute.github.io/cyclops/api" target="_self" rel="noopener noreferrer" class="footer__link-item">API</a></li><li class="footer__item"><a href="https://vectorinstitute.github.io/cyclops/api/tutorials" target="_self" rel="noopener noreferrer" class="footer__link-item">Tutorial</a></li></ul></div><div class="col footer__col"><div class="footer__title">More</div><ul class="footer__items clean-list"><li class="footer__item"><a class="footer__link-item" href="/cyclops/blog">Blog</a></li><li class="footer__item"><a href="https://github.com/VectorInstitute/cyclops" target="_blank" rel="noopener noreferrer" class="footer__link-item">GitHub<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li></ul></div></div><div class="footer__bottom text--center"><div class="footer__copyright">Copyright © 2023 CyclOps, built by AI Engineering @ Vector Institute</div></div></div></footer></div>
Expand Down
44 changes: 42 additions & 2 deletions api/_sources/tutorials/kaggle/heart_failure_prediction.ipynb.txt
Original file line number Diff line number Diff line change
Expand Up @@ -299,7 +299,7 @@
"source": [
"class_counts = df[\"outcome\"].value_counts()\n",
"class_ratio = class_counts[0] / class_counts[1]\n",
"print(class_ratio)"
"print(class_ratio, class_counts)"
]
},
{
Expand Down Expand Up @@ -714,6 +714,7 @@
" \"recall\",\n",
" \"f1_score\",\n",
" \"auroc\",\n",
" \"average_precision\",\n",
" \"roc_curve\",\n",
" \"precision_recall_curve\",\n",
"]\n",
Expand Down Expand Up @@ -895,14 +896,15 @@
" results=results_female,\n",
" model_name=model_name,\n",
")\n",
"\n",
"# ruff: noqa: W505\n",
"for name, metric in results_female_flat.items():\n",
" split, name = name.split(\"/\") # noqa: PLW2901\n",
" descriptions = {\n",
" \"BinaryPrecision\": \"The proportion of predicted positive instances that are correctly predicted.\",\n",
" \"BinaryRecall\": \"The proportion of actual positive instances that are correctly predicted. Also known as recall or true positive rate.\",\n",
" \"BinaryAccuracy\": \"The proportion of all instances that are correctly predicted.\",\n",
" \"BinaryAUROC\": \"The area under the receiver operating characteristic curve (AUROC) is a measure of the performance of a binary classification model.\",\n",
" \"BinaryAveragePrecision\": \"The area under the precision-recall curve (AUPRC) is a measure of the performance of a binary classification model.\",\n",
" \"BinaryF1Score\": \"The harmonic mean of precision and recall.\",\n",
" }\n",
" report.log_quantitative_analysis(\n",
Expand All @@ -922,6 +924,7 @@
" \"BinaryRecall\": \"The proportion of actual positive instances that are correctly predicted. Also known as recall or true positive rate.\",\n",
" \"BinaryAccuracy\": \"The proportion of all instances that are correctly predicted.\",\n",
" \"BinaryAUROC\": \"The area under the receiver operating characteristic curve (AUROC) is a measure of the performance of a binary classification model.\",\n",
" \"BinaryAveragePrecision\": \"The area under the precision-recall curve (AUPRC) is a measure of the performance of a binary classification model.\",\n",
" \"BinaryF1Score\": \"The harmonic mean of precision and recall.\",\n",
" }\n",
" report.log_quantitative_analysis(\n",
Expand Down Expand Up @@ -986,6 +989,43 @@
"roc_plot.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# extracting the precision-recall curves and average precision results for all the slices\n",
"pr_curves = {\n",
" slice_name: slice_results[\"BinaryPrecisionRecallCurve\"]\n",
" for slice_name, slice_results in results[model_name].items()\n",
"}\n",
"average_precisions = {\n",
" slice_name: slice_results[\"BinaryAveragePrecision\"]\n",
" for slice_name, slice_results in results[model_name].items()\n",
"}\n",
"pr_curves.keys()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# plotting the precision-recall curves for all the slices\n",
"pr_plot = plotter.precision_recall_curve_comparison(\n",
" pr_curves,\n",
" auprcs=average_precisions,\n",
")\n",
"report.log_plotly_figure(\n",
" fig=pr_plot,\n",
" caption=\"Precision-Recall Curve Comparison\",\n",
" section_name=\"quantitative analysis\",\n",
")\n",
"pr_plot.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
Expand Down
44 changes: 42 additions & 2 deletions api/_sources/tutorials/mimiciv/mortality_prediction.ipynb.txt
Original file line number Diff line number Diff line change
Expand Up @@ -404,7 +404,7 @@
"# The data is heavily unbalanced.\n",
"class_counts = cohort[\"mortality_outcome\"].value_counts()\n",
"class_ratio = class_counts[0] / class_counts[1]\n",
"print(class_ratio)"
"print(class_ratio, class_counts)"
]
},
{
Expand Down Expand Up @@ -780,6 +780,7 @@
" \"recall\",\n",
" \"f1_score\",\n",
" \"auroc\",\n",
" \"average_precision\",\n",
" \"roc_curve\",\n",
" \"precision_recall_curve\",\n",
"]\n",
Expand Down Expand Up @@ -937,13 +938,15 @@
"metadata": {},
"outputs": [],
"source": [
"# ruff: noqa: W505\n",
"for name, metric in results_flat.items():\n",
" split, name = name.split(\"/\") # noqa: PLW2901\n",
" descriptions = {\n",
" \"BinaryPrecision\": \"The proportion of predicted positive instances that are correctly predicted.\",\n",
" \"BinaryRecall\": \"The proportion of actual positive instances that are correctly predicted. Also known as recall or true positive rate.\",\n",
" \"BinaryAccuracy\": \"The proportion of all instances that are correctly predicted.\",\n",
" \"BinaryAUROC\": \"The area under the receiver operating characteristic curve (AUROC) is a measure of the performance of a binary classification model.\",\n",
" \"BinaryAveragePrecision\": \"The area under the precision-recall curve (AUPRC) is a measure of the performance of a binary classification model.\",\n",
" \"BinaryF1Score\": \"The harmonic mean of precision and recall.\",\n",
" }\n",
" report.log_quantitative_analysis(\n",
Expand Down Expand Up @@ -992,6 +995,24 @@
"roc_curves.keys()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# extracting the precision-recall curves and average precision results for all the slices\n",
"pr_curves = {\n",
" slice_name: slice_results[\"BinaryPrecisionRecallCurve\"]\n",
" for slice_name, slice_results in results[model_name].items()\n",
"}\n",
"average_precisions = {\n",
" slice_name: slice_results[\"BinaryAveragePrecision\"]\n",
" for slice_name, slice_results in results[model_name].items()\n",
"}\n",
"pr_curves.keys()"
]
},
{
"cell_type": "code",
"execution_count": null,
Expand All @@ -1002,12 +1023,31 @@
"roc_plot = plotter.roc_curve_comparison(roc_curves, aurocs=aurocs)\n",
"report.log_plotly_figure(\n",
" fig=roc_plot,\n",
" caption=\"ROC Curve for Female Patients\",\n",
" caption=\"ROC Curve Comparison\",\n",
" section_name=\"quantitative analysis\",\n",
")\n",
"roc_plot.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# plotting the precision-recall curves for all the slices\n",
"pr_plot = plotter.precision_recall_curve_comparison(\n",
" pr_curves,\n",
" auprcs=average_precisions,\n",
")\n",
"report.log_plotly_figure(\n",
" fig=pr_plot,\n",
" caption=\"Precision-Recall Curve Comparison\",\n",
" section_name=\"quantitative analysis\",\n",
")\n",
"pr_plot.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
Expand Down
2 changes: 1 addition & 1 deletion api/searchindex.js

Large diffs are not rendered by default.

Loading

0 comments on commit 229ad68

Please sign in to comment.