Skip to content

Commit

Permalink
Reorganize package dependencies (#506)
Browse files Browse the repository at this point in the history
* Update dependencies and imports for MONAI and typing

* Refactor MedicalImage and MedicalImageFolder
classes

* allow init of MedicalImage class; raise error in methods

* Refactor import_optional_module function to allow importing module attributes

* Refactor MedicalImage optional module imports

* Update dependencies in pyproject.toml

* Add test for MedicalImage feature without MONAI

* Prevent use of txrv_transforms method at runtime if MONAI is not installed

* Move report package deps to core installation

* Adjust package installation tests

* Formatting fix

* Remove report package test action

* Formatting fix

* remove txrv_transforms, add dictionary wrapper for torchvision transforms, and remove monai deps from monitor package

* fix repr for transform

* fix Dictd call func

* fix monitor-api notebook

* Update imports for image transforms

* Update metadata for cxr_classification.ipynb

Signed-off-by: Franklin <41602287+fcogidi@users.noreply.github.com>

* fix transforms in notebooks

---------

Signed-off-by: Franklin <41602287+fcogidi@users.noreply.github.com>
Co-authored-by: Amrit K <amritk@vectorinstitute.ai>
Co-authored-by: akore <akore0x5f@gmail.com>
  • Loading branch information
3 people authored Nov 21, 2023
1 parent b5ecf98 commit 8a0ef2f
Show file tree
Hide file tree
Showing 26 changed files with 1,268 additions and 1,115 deletions.
14 changes: 0 additions & 14 deletions .github/workflows/package.yml
Original file line number Diff line number Diff line change
Expand Up @@ -51,17 +51,3 @@ jobs:
pip install -e ".[models]"
pip install pytest
python3 -m pytest tests/package/extras/models.py
extra-report-package-install-check:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Install pip
run: python3 -m pip install --upgrade pip
- uses: actions/setup-python@v4.7.1
with:
python-version: '3.10'
- name: Install package and test import
run: |
pip install -e ".[report]"
pip install pytest
python3 -m pytest tests/package/extras/report.py
33 changes: 7 additions & 26 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,20 +13,17 @@

``cyclops`` is a toolkit for facilitating research and deployment of ML models for healthcare. It provides a few high-level APIs namely:

* `data` - Create datasets for training, inference and evaluation. We use the popular 🤗 [datasets](https://github.com/huggingface/datasets) to efficiently load and slice different modalities of data.
* `models` - Use common model implementations using [scikit-learn](https://scikit-learn.org/stable/) and [PyTorch](https://pytorch.org/).
* `tasks` - Use canonical Healthcare ML tasks such as
* Mortality prediction
* Chest X-ray classification
* `data` - Create datasets for training, inference and evaluation. We use the popular 🤗 [datasets](https://github.com/huggingface/datasets) to efficiently load and slice different modalities of data
* `models` - Use common model implementations using [scikit-learn](https://scikit-learn.org/stable/) and [PyTorch](https://pytorch.org/)
* `tasks` - Use common ML task formulations such as binary classification or multi-label classification on tabular, time-series and image data
* `evaluate` - Evaluate models on clinical prediction tasks
* `monitor` - Detect dataset shift relevant for clinical use cases
* `report` - Create [model report cards](https://vectorinstitute.github.io/cyclops/api/tutorials/nihcxr/nihcxr_report_periodic.html) for clinical ML models

``cyclops`` also provides a library of end-to-end use cases on clinical datasets such as
``cyclops`` also provides example end-to-end use case implementations on clinical datasets such as

* [MIMIC-III](https://physionet.org/content/mimiciii/1.4/)
* [NIH chest x-ray](https://www.nih.gov/news-events/news-releases/nih-clinical-center-provides-one-largest-publicly-available-chest-x-ray-datasets-scientific-community)
* [MIMIC-IV](https://physionet.org/content/mimiciv/2.0/)
* [eICU-CRD](https://eicu-crd.mit.edu/about/eicu/)


## 🐣 Getting Started
Expand All @@ -37,31 +34,15 @@
python3 -m pip install pycyclops
```

The base package installation supports the use of the `data` and `process` APIs to load
and transform clinical data, for downstream tasks.
The base cyclops installation doesn't include modelling packages.

To install additional functionality from the other APIs, they can be installed as extras.
To install additional dependencies for using models,


To install with `models`, `tasks`, `evaluate` and `monitor` API support,

```bash
python3 -m pip install 'pycyclops[models]'
```

To install with `report` API support,

```bash
python3 -m pip install 'pycyclops[report]'
```

Multiple extras could also be combined, for example to install with both `report` and
`models` support:

```bash
python3 -m pip install 'pycyclops[report,models]'
```


## 🧑🏿‍💻 Developing

Expand Down
104 changes: 81 additions & 23 deletions cyclops/data/features/medical_image.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,10 @@
"""Medical image feature."""

import logging
import os
import tempfile
from dataclasses import dataclass, field
from io import BytesIO
from typing import Any, ClassVar, Dict, Optional, Tuple, Union
from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Tuple, Union

import numpy as np
import numpy.typing as npt
Expand All @@ -15,18 +14,56 @@
from datasets.features import Image, features
from datasets.utils.file_utils import is_local_path
from datasets.utils.py_utils import string_to_dict
from monai.data.image_reader import ImageReader
from monai.data.image_writer import ITKWriter
from monai.transforms.compose import Compose
from monai.transforms.io.array import LoadImage
from monai.transforms.utility.array import ToNumpy

from cyclops.utils.log import setup_logging
from cyclops.utils.optional import import_optional_module


# Logging.
LOGGER = logging.getLogger(__name__)
setup_logging(print_level="INFO", logger=LOGGER)
if TYPE_CHECKING:
from monai.data.image_reader import ImageReader
from monai.data.image_writer import ITKWriter
from monai.transforms.compose import Compose
from monai.transforms.io.array import LoadImage
from monai.transforms.utility.array import ToNumpy
else:
ImageReader = import_optional_module(
"monai.data.image_reader",
attribute="ImageReader",
error="warn",
)
ITKWriter = import_optional_module(
"monai.data.image_writer",
attribute="ITKWriter",
error="warn",
)
Compose = import_optional_module(
"monai.transforms.compose",
attribute="Compose",
error="warn",
)
LoadImage = import_optional_module(
"monai.transforms.io.array",
attribute="LoadImage",
error="warn",
)
ToNumpy = import_optional_module(
"monai.transforms.utility.array",
attribute="ToNumpy",
error="warn",
)
_monai_available = all(
module is not None
for module in (
ImageReader,
ITKWriter,
Compose,
LoadImage,
ToNumpy,
)
)
_monai_unavailable_message = (
"The MONAI library is required to use the `MedicalImage` feature. "
"Please install it with `pip install monai`."
)


@dataclass
Expand All @@ -35,24 +72,35 @@ class MedicalImage(Image): # type: ignore
Parameters
----------
decode : bool, optional, default=True
Whether to decode the image. If False, the image will be returned as a
dictionary in the format `{"path": image_path, "bytes": image_bytes}`.
reader : Union[str, ImageReader], optional, default="ITKReader"
The MONAI image reader to use.
suffix : str, optional, default=".jpg"
The suffix to use when decoding bytes to image.
decode : bool, optional, default=True
Whether to decode the image. If False, the image will be returned as a
dictionary in the format `{"path": image_path, "bytes": image_bytes}`.
id : str, optional, default=None
The id of the feature.
"""

reader: Union[str, ImageReader] = "ITKReader"
suffix: str = ".jpg" # used when decoding/encoding bytes to image
_loader = Compose(
[
LoadImage(reader=reader, simple_keys=True, dtype=None, image_only=True),
ToNumpy(),
],
)

_loader = None
if _monai_available:
_loader = Compose(
[
LoadImage(
reader=reader,
simple_keys=True,
dtype=None,
image_only=False,
),
ToNumpy(),
],
)

# Automatically constructed
dtype: ClassVar[str] = "dict"
pa_type: ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()})
Expand All @@ -76,12 +124,14 @@ def encode_example(
"""
if isinstance(value, list):
value = np.array(value)
value = np.asarray(value)

if isinstance(value, str):
return {"path": value, "bytes": None}

if isinstance(value, np.ndarray):
return _encode_ndarray(value, image_format=self.suffix)

if "array" in value and "metadata" in value:
output_ext_ = self.suffix
metadata_ = value["metadata"]
Expand Down Expand Up @@ -132,7 +182,7 @@ def decode_example(
if not self.decode:
raise RuntimeError(
"Decoding is disabled for this feature. "
"Please use MedicalImage(decode=True) instead.",
"Please use `MedicalImage(decode=True)` instead.",
)

if token_per_repo_id is None:
Expand All @@ -147,6 +197,8 @@ def decode_example(
)

if is_local_path(path):
if self._loader is None:
raise RuntimeError(_monai_unavailable_message)
image, metadata = self._loader(path)
else:
source_url = path.split("::")[-1]
Expand Down Expand Up @@ -188,6 +240,9 @@ def _read_file_from_bytes(
Image as numpy array and metadata as dictionary.
"""
if self._loader is None:
raise RuntimeError(_monai_unavailable_message)

# XXX: Can we avoid writing to disk?
with tempfile.NamedTemporaryFile(mode="wb", suffix=self.suffix) as fp:
fp.write(buffer.getvalue())
Expand Down Expand Up @@ -219,6 +274,9 @@ def _encode_ndarray(
Dictionary containing the image bytes and path.
"""
if not _monai_available:
raise RuntimeError(_monai_unavailable_message)

if not image_format.startswith("."):
image_format = "." + image_format

Expand All @@ -240,5 +298,5 @@ def _encode_ndarray(
return {"path": None, "bytes": temp_file_bytes}


# add the `MedicalImage` feature to the `features` module
# add the `MedicalImage` feature to the `features` module namespace
features.MedicalImage = MedicalImage
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ class MedicalImageFolderConfig(
class MedicalImageFolder(folder_based_builder.FolderBasedBuilder): # type: ignore
"""MedicalImageFolder."""

BASE_FEATURE = MedicalImage()
BASE_FEATURE = MedicalImage
BASE_COLUMN_NAME = "image"
BUILDER_CONFIG_CLASS = MedicalImageFolderConfig
EXTENSIONS: List[str] # definition at the bottom of the script
Expand Down
108 changes: 82 additions & 26 deletions cyclops/data/transforms.py
Original file line number Diff line number Diff line change
@@ -1,28 +1,84 @@
"""Transforms for the datasets."""
from typing import Any, Callable, Tuple

from typing import Tuple

from monai.transforms import Lambdad, Resized, ToDeviced # type: ignore
from torchvision.transforms import Compose


def txrv_transforms(
keys: Tuple[str, ...] = ("features",),
device: str = "cpu",
) -> Compose:
"""Set of transforms for the models in the TXRV library."""
return Compose(
[
Resized(
keys=keys,
spatial_size=(1, 224, 224),
allow_missing_keys=True,
),
Lambdad(
keys=keys,
func=lambda x: ((2 * (x / 255.0)) - 1.0) * 1024,
allow_missing_keys=True,
),
ToDeviced(keys=keys, device=device, allow_missing_keys=True),
],
)
from torchvision.transforms import Lambda, Resize


# generic dictionary-based wrapper for any transform
class Dictd:
"""Generic dictionary-based wrapper for any transform."""

def __init__(
self,
transform: Callable[..., Any],
keys: Tuple[str, ...],
allow_missing_keys: bool = False,
):
self.transform = transform
self.keys = keys
self.allow_missing_keys = allow_missing_keys

def __call__(self, data: Any) -> Any:
"""Apply the transform to the data."""
for key in self.keys:
if self.allow_missing_keys and key not in data:
continue
data[key] = self.transform(data[key])
return data

def __repr__(self) -> str:
"""Return a string representation of the transform."""
return (
f"{self.__class__.__name__}(transform={self.transform}, "
f"keys={self.keys}, allow_missing_keys={self.allow_missing_keys})"
)


# dictionary-based wrapper of Lambda transform using Dictd
class Lambdad:
"""Dictionary-based wrapper of Lambda transform using Dictd."""

def __init__(
self,
func: Callable[..., Any],
keys: Tuple[str, ...],
allow_missing_keys: bool = False,
):
self.transform = Dictd(
transform=Lambda(func),
keys=keys,
allow_missing_keys=allow_missing_keys,
)

def __call__(self, data: Any) -> Any:
"""Apply the transform to the data."""
return self.transform(data)

def __repr__(self) -> str:
"""Return a string representation of the transform."""
return f"{self.__class__.__name__}(keys={self.transform.keys}, allow_missing_keys={self.transform.allow_missing_keys})"


# dictionary-based wrapper of Resize transform using Dictd
class Resized:
"""Dictionary-based wrapper of Resize transform using Dictd."""

def __init__(
self,
spatial_size: Tuple[int, int],
keys: Tuple[str, ...],
allow_missing_keys: bool = False,
):
self.transform = Dictd(
transform=Resize(size=spatial_size),
keys=keys,
allow_missing_keys=allow_missing_keys,
)

def __call__(self, data: Any) -> Any:
"""Apply the transform to the data."""
return self.transform(data)

def __repr__(self) -> str:
"""Return a string representation of the transform."""
return f"{self.__class__.__name__}(keys={self.transform.keys}, allow_missing_keys={self.transform.allow_missing_keys})"
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
if TYPE_CHECKING:
from mpi4py import MPI
else:
MPI = import_optional_module("mpi4py.MPI", error="ignore")
MPI = import_optional_module("mpi4py.MPI", error="warn")
# mypy: disable-error-code="no-any-return"


Expand Down
Loading

0 comments on commit 8a0ef2f

Please sign in to comment.