| Mode | Dataset Link | Pre-computed Saliency Maps | Model Weights | Pre-trained Weights |
|---|---|---|---|---|
| USOD | Train/Test | Saliency Maps | Weights | Pre-trained Weights |
| RGBD | Train/Test | Saliency Maps | Weights | Pre-trained Weights |
There are two settings: USOD (Underwater Salient Object Detection) and RGBD. Below, changing the training_scheme will enable either training.
The below command for USOD training -
python training.py \
--lr 0.0005 \
--epochs 26 \
--f_name "USODFuseNet" \
--n 4 \
--b 16 \
--sched 1 \
--training_scheme "RGBD" \
--salient_loss_weight 1.0 \
--use_pretrained 1 \
--checkpoint_name "SODAWideNet++" \
--im_size 256For RGBD training, use the following command -
python training.py \
--lr 0.0005 \
--epochs 21 \
--f_name "USODFuseNetRGBD" \
--n 4 \
--b 16 \
--sched 1 \
--training_scheme "RGBD" \
--salient_loss_weight 1.0 \
--use_pretrained 1 \
--checkpoint_name "SODAWideNet++" \
--im_size 256Download the trained weights and place them in a folder named checkpoints. Also, change checkpoint names in inference.py file (line numbers 24 & 25) for different modes.
- Use the command below to produce a saliency map for a single image-depth pair. Remove the display flag from the above command to save the prediction.
python inference.py --mode single --input_path path/to/image.jpg --depth_path path/to/depth_image.jpg --display- Use the below command to run inference on a series of images in a folder and save the predicted saliency maps.
python inference.py --mode folder --input_path path/to/image_folder --depth_path path/to/depth_folder --output_dir path/to/output_folder