Skip to content

Test-Time Memory Framework: Control Hallucinations in Foundation Models

License

Notifications You must be signed in to change notification settings

Vortx-AI/memories-dev

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🌍 memories-dev

Test-Time Memory Framework: Control Hallucinations in Foundation Models

License Python 3.9+ Code style: black Python Versions PyPI Download Version Discord

memories.dev - Collective AGI Memory | Product Hunt

Real-time Contextual Memory Integration for Mission-Critical AI Applications

Deployment-ready β€’ Space-hardened β€’ 99.9% Reliability


memories-dev Architecture

πŸ“Š Overview

memories-dev provides a robust framework for eliminating hallucinations in foundation models through real-time contextual memory integration. Built for developers requiring absolute reliability, our system ensures AI outputs are verified against factual context before delivery to your applications.

Key benefits include:

  • Factual Grounding: Verify AI responses against contextual truth data in real-time
  • Minimal Latency: Framework adds less than 100ms overhead to inference
  • Deployment Flexibility: Horizontal scaling for high-throughput applications
  • Comprehensive Verification: Multi-stage validation ensures response accuracy

These capabilities are achieved through our memory verification framework that integrates seamlessly with any AI model, providing reliable operation even in challenging environments.

πŸ“ Table of Contents

πŸ”¬ Memory Verification Framework

Our three-stage verification framework ensures reliable AI outputs:

Stage 1: Input Validation (EARTH)

Prevents corrupted or invalid data from entering the memory system using advanced validation rules and structured verification protocols.

Stage 2: Truth Verification (S-2)

Cross-validates information using multiple sources to establish reliable ground truth. Implements consistency checks and verification algorithms for data quality.

Stage 3: Response Validation (S-3)

Real-time verification of outputs against verified truth database. Applies confidence scoring to ensure response accuracy and validity.

Each stage works together to create a reliable memory system:

%%{init: { 'theme': 'default', 'themeVariables': { 'primaryColor': '#4C78B5', 'primaryTextColor': '#fff', 'primaryBorderColor': '#3A5D8C', 'lineColor': '#3A5D8C', 'secondaryColor': '#41B883', 'tertiaryColor': '#F7A922' } }}%%
graph TD
    classDef inputStage fill:#3b82f6,stroke:#2563eb,stroke-width:2px,color:white,font-weight:bold,rounded:true
    classDef truthStage fill:#ef4444,stroke:#dc2626,stroke-width:2px,color:white,font-weight:bold,rounded:true
    classDef responseStage fill:#10b981,stroke:#059669,stroke-width:2px,color:white,font-weight:bold,rounded:true
    classDef dataFlow fill:#8b5cf6,stroke:#7c3aed,stroke-width:2px,color:white,font-weight:bold,rounded:true
    
    A[Input Data] -->|"Feed"| B[Stage 1: Input Validation]
    B -->|"Process"| C[Validated Input]
    C -->|"Verify"| D[Stage 2: Truth Verification]
    D -->|"Confirm"| E[Verified Truth]
    E -->|"Validate"| F[Stage 3: Response Validation]
    F -->|"Deliver"| G[Verified Response]
    
    B:::inputStage
    D:::truthStage
    F:::responseStage
    A:::dataFlow
    C:::dataFlow
    E:::dataFlow
    G:::dataFlow

    linkStyle default stroke-width:2px,fill:none,stroke:#3A5D8C,curve:basis
Loading

πŸ“¦ Installation

Choose the installation option that best fits your needs:

1. CPU-only Installation (Default)

pip install memories-dev

2. GPU Support Installation

For CUDA 11.8:

pip install memories-dev[gpu]

For different CUDA versions, install PyTorch manually first:

# For CUDA 12.1
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

# Then install the package
pip install memories-dev[gpu]

3. Development Installation

For contributing to the project:

pip install memories-dev[dev]

4. Documentation Tools

For building documentation:

pip install memories-dev[docs]

5. Alternative Installation via Conda

conda install -c memories-dev

πŸ”§ Common Issues and Solutions

Shapely Version Conflicts

  • For Python <3.13: Uses Shapely 1.7.0-1.8.5
  • For Python β‰₯3.13: Uses Shapely 2.0+

GPU Dependencies

  • CUDA toolkit must be installed separately
  • PyTorch Geometric packages are installed from wheels matching your CUDA version

Package Conflicts

If you encounter dependency conflicts:

pip install --upgrade pip
pip install memories-dev --no-deps
pip install -r requirements.txt

Missing Dependencies

For some specialized features, you may need to install:

# For spatial data processing
pip install geopandas rtree pyproj

# For advanced visualization
pip install matplotlib seaborn plotly

Memory Configuration Issues

If encountering memory-related errors:

from memories import Config

# Adjust memory tiers based on your hardware
config = Config(
    hot_memory_size=4,  # GB
    warm_memory_size=16,  # GB
    cold_memory_size=64,  # GB
    vector_store="faiss"  # Alternatives: milvus, qdrant, pgvector
)

πŸ› οΈ Development Setup

  1. Clone the repository:
git clone https://github.com/Vortx-AI/memories-dev.git
cd memories-dev
  1. Create a virtual environment:
python -m venv venv
source venv/bin/activate  # Linux/Mac
# or
.\venv\Scripts\activate  # Windows
  1. Install development dependencies:
pip install -e .[dev]
  1. Install pre-commit hooks:
pre-commit install
  1. Run tests:
pytest tests/
  1. Build documentation:
cd docs
make html

πŸ—οΈ Core Architecture

The Test-Time Memory Framework integrates with your AI systems through a simple, effective process:

  1. AI model generates initial response
  2. Memory framework retrieves contextual data
  3. Response is verified against contextual information
  4. Verified response delivered to application
%%{init: { 'theme': 'default', 'themeVariables': { 'primaryColor': '#1F3A60', 'primaryTextColor': '#fff', 'primaryBorderColor': '#0F2A4C', 'lineColor': '#0F2A4C', 'secondaryColor': '#41B883', 'tertiaryColor': '#F7A922' } }}%%
sequenceDiagram
    participant App as Application
    participant AI as AI Model
    participant MF as Memory Framework
    participant CD as Contextual Data
    
    rect rgba(64, 78, 103, 0.1)
    note right of App: Request Phase
    App->>+AI: Request response
    AI->>AI: Generate initial response
    end
    
    rect rgba(43, 155, 128, 0.1)
    note right of AI: Verification Phase
    AI->>+MF: Send for verification
    MF->>+CD: Retrieve contextual data
    CD-->>-MF: Return relevant context
    MF->>MF: Verify response against context
    MF-->>-AI: Return verified response
    end
    
    rect rgba(170, 110, 40, 0.1)
    note right of AI: Delivery Phase
    AI-->>-App: Deliver validated response
    end
    
    note over App,CD: Complete Verification Cycle
Loading

Memory System Architecture

Our multi-tiered memory system ensures optimal performance and reliability:

%%{init: { 'theme': 'default', 'themeVariables': { 'primaryColor': '#2c3e50', 'primaryTextColor': '#ecf0f1', 'primaryBorderColor': '#34495e', 'lineColor': '#3498db', 'secondaryColor': '#2980b9', 'tertiaryColor': '#1abc9c' } }}%%
graph TB
    classDef primary fill:#2c3e50,stroke:#34495e,stroke-width:2px,color:white,font-weight:bold,rounded:true
    classDef secondary fill:#3498db,stroke:#2980b9,stroke-width:2px,color:white,rounded:true
    classDef tertiary fill:#1abc9c,stroke:#16a085,stroke-width:2px,color:white,rounded:true
    
    A[Client Application]:::primary -->|"Requests"| B[Memory Manager]:::primary
    B -->|"Collects"| C[Data Acquisition]:::secondary
    B -->|"Stores"| D[Memory Store]:::secondary
    B -->|"Analyzes"| E[Earth Analyzers]:::secondary
    B -->|"Integrates"| F[AI Integration]:::secondary
    
    C -->|"Satellite"| C1[Satellite Data]:::tertiary
    C -->|"Vector"| C2[Vector Data]:::tertiary
    C -->|"IoT"| C3[Sensor Data]:::tertiary
    C -->|"External"| C4[Environmental APIs]:::tertiary
    
    D -->|"Fast Access"| D1[Hot Memory]:::tertiary
    D -->|"Regular Access"| D2[Warm Memory]:::tertiary
    D -->|"Infrequent Access"| D3[Cold Memory]:::tertiary
    D -->|"Archival"| D4[Glacier Storage]:::tertiary
    
    E -->|"Elevation"| E1[Terrain Analysis]:::tertiary
    E -->|"Weather"| E2[Climate Analysis]:::tertiary
    E -->|"Impact"| E3[Environmental Impact]:::tertiary
    E -->|"Development"| E4[Urban Development]:::tertiary
    
    F -->|"LLM"| F1[Model Connectors]:::tertiary
    F -->|"Context"| F2[Context Formation]:::tertiary
    F -->|"Prompts"| F3[Prompt Engineering]:::tertiary
    F -->|"Validation"| F4[Response Validation]:::tertiary
    
    linkStyle default stroke-width:2px,fill:none,stroke:#3498db,curve:basis
Loading

Data Processing Workflow

Our comprehensive data flow architecture transforms raw observation data into actionable intelligence:

%%{init: {'theme': 'dark', 'themeVariables': { 'primaryColor': '#0f172a', 'primaryTextColor': '#f8fafc', 'primaryBorderColor': '#334155', 'lineColor': '#3b82f6', 'secondaryColor': '#10b981', 'tertiaryColor': '#8b5cf6'}}}%%
graph LR
    classDef ingestion fill:#1d4ed8,stroke:#1e40af,stroke-width:2px,color:white,font-weight:bold,rounded:true
    classDef processing fill:#b91c1c,stroke:#991b1b,stroke-width:2px,color:white,font-weight:bold,rounded:true
    classDef storage fill:#047857,stroke:#065f46,stroke-width:2px,color:white,font-weight:bold,rounded:true
    classDef analytics fill:#7c3aed,stroke:#6d28d9,stroke-width:2px,color:white,font-weight:bold,rounded:true
    classDef delivery fill:#9a3412,stroke:#9a3412,stroke-width:2px,color:white,font-weight:bold,rounded:true
    
    %% Data Ingestion Nodes
    A1[Satellite Imagery] -.->|"Raw Data"| A
    A2[Vector Databases] -.->|"Spatial"| A
    A3[Sensor Networks] -.->|"IoT"| A
    A4[Environmental APIs] -.->|"External"| A
    A[Data Ingestion Engine] ==>|"Input"| B
    
    %% Data Processing Nodes
    B ==>|"Process"| B1[Data Cleaning]
    B ==>|"Extract"| B2[Feature Extraction]
    B ==>|"Time Align"| B3[Temporal Alignment]
    B ==>|"Geo Register"| B4[Spatial Registration]
    B[Multi-Modal Processing] ==>|"Transform"| C
    
    %% Storage Nodes
    C ==>|"Immediate"| C1[Hot Memory Cache]
    C ==>|"Regular"| C2[Warm Vector Store]
    C ==>|"Archive"| C3[Cold Object Storage]
    C ==>|"Deep Archive"| C4[Glacier Archive]
    C[Adaptive Memory System] ==>|"Store"| D
    
    %% Analytics Nodes
    D ==>|"Spatial"| D1[Geospatial Analytics]
    D ==>|"Temporal"| D2[Time Series Analytics]
    D ==>|"Evolution"| D3[Change Detection]
    D ==>|"Patterns"| D4[Correlation Engine]
    D[Earth Intelligence Suite] ==>|"Analyze"| E
    
    %% Delivery Nodes
    E ==>|"Models"| E1[AI Model Integration]
    E ==>|"Services"| E2[Application APIs]
    E ==>|"Visual"| E3[Visualization Tools]
    E ==>|"Export"| E4[Export Services]
    E[Insight Delivery] ==>|"Decide"| F
    
    F[Decision Intelligence]
    
    %% Classifications
    A1:::ingestion
    A2:::ingestion
    A3:::ingestion
    A4:::ingestion
    A:::ingestion
    
    B1:::processing
    B2:::processing
    B3:::processing
    B4:::processing
    B:::processing
    
    C1:::storage
    C2:::storage
    C3:::storage
    C4:::storage
    C:::storage
    
    D1:::analytics
    D2:::analytics
    D3:::analytics
    D4:::analytics
    D:::analytics
    
    E1:::delivery
    E2:::delivery
    E3:::delivery
    E4:::delivery
    E:::delivery
    
    F:::delivery
    
    linkStyle 0,1,2,3 stroke:#1d4ed8,stroke-width:1.5px,stroke-dasharray:3,curve:basis;
    linkStyle 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 stroke-width:3px,fill:none,curve:basis;
Loading

πŸš€ Advanced Applications

Our satellite-verified memory system powers a wide range of cutting-edge AI applications where factual grounding and reliability are mission-critical:

Space-Based Applications

Upstream Ground Systems

Enhance pre-launch verification with AI that can validate mission parameters against physical constraints, preventing costly errors before they reach orbit.

In-Orbit Decision Making

Enable autonomous spacecraft to make reliable decisions during communication blackouts by maintaining factual context about their environment and mission parameters.

Downstream Data Processing

Process satellite telemetry and science data with context-aware AI that can detect anomalies, classify observations, and prioritize findings without hallucinations.

Robotics & Physical AI

Autonomous Systems

Ground exploration robots maintain accurate terrain understanding and mission objectives even with delayed or limited communication with control systems.

Industrial Automation

Enable robotic construction and manufacturing with AI that maintains accurate spatial awareness and operation plans verified against physical constraints.

Earth Applications

Healthcare

In medical diagnostics and treatment planning, our memory framework ensures AI systems provide accurate recommendations by verifying outputs against real-time patient data and established medical protocols.

Transportation & Logistics

For autonomous vehicles, air traffic control, and logistics management, our framework helps reduce decision errors by incorporating real-time environmental data into AI decision processes.

Financial Services

For algorithmic trading, fraud detection, and risk assessment, our technology helps prevent costly errors by verifying AI decisions against current market conditions and regulatory requirements.

🚒 Deployment Patterns

memories.dev supports three powerful deployment patterns to meet diverse operational needs:

1. Standalone Deployment

Optimized for single-tenant applications requiring maximum performance:

%%{init: { 'theme': 'default', 'themeVariables': { 'primaryColor': '#0F4C81', 'primaryTextColor': '#fff', 'primaryBorderColor': '#0D3E69', 'lineColor': '#0D3E69', 'secondaryColor': '#41B883', 'tertiaryColor': '#F7A922' } }}%%
graph TD
    subgraph Architecture["Standalone Architecture"]
        direction TB
        
        Client[Client Applications] -->|"Requests"| API[API Gateway]
        API -->|"Process"| Server[Memories Server]
        Server -->|"Inference"| Models[Model System]
        Server -->|"Data"| DataAcq[Data Acquisition]
        Models -->|"Local"| LocalModels[Local Models]
        Models -->|"External"| APIModels[API-based Models]
        DataAcq -->|"Vector"| VectorData[Vector Data Sources]
        DataAcq -->|"Earth"| SatelliteData[Satellite Data]
        Server -->|"Persist"| Storage[Persistent Storage]
    end
    
    classDef client fill:#4C78B5,stroke:#3A5D8C,color:white,font-weight:bold,rounded:true
    classDef server fill:#41B883,stroke:#2D8A64,color:white,font-weight:bold,rounded:true
    classDef model fill:#F7A922,stroke:#BF821A,color:white,rounded:true
    classDef data fill:#F06292,stroke:#C2185B,color:white,rounded:true
    classDef storage fill:#7E57C2,stroke:#5E35B1,color:white,rounded:true
    
    class Client client
    class API,Server server
    class Models,LocalModels,APIModels model
    class DataAcq,VectorData,SatelliteData data
    class Storage storage
    
    linkStyle default stroke-width:2px,fill:none,curve:basis
Loading

Best suited for:

  • High-performance computing workloads
  • Machine learning model inference
  • Real-time data processing
  • Direct hardware access

2. Consensus Deployment

Perfect for distributed systems requiring strong consistency:

%%{init: { 'theme': 'default', 'themeVariables': { 'primaryColor': '#0F4C81', 'primaryTextColor': '#fff', 'primaryBorderColor': '#0D3E69', 'lineColor': '#0D3E69', 'secondaryColor': '#41B883', 'tertiaryColor': '#F7A922' } }}%%
graph TD
    subgraph ConsensusArch["Consensus Architecture"]
        direction TB
        
        Client[Client Applications] -->|"Load Balanced"| LB[Load Balancer]
        LB -->|"Route"| Node1[Node 1]
        LB -->|"Route"| Node2[Node 2]
        LB -->|"Route"| Node3[Node 3]
        
        subgraph "Consensus Group"
            direction LR
            Node1 <-->|"Sync"| Node2
            Node2 <-->|"Sync"| Node3
            Node3 <-->|"Sync"| Node1
        end
        
        Node1 -->|"Inference"| Models1[Model System]
        Node2 -->|"Inference"| Models2[Model System]
        Node3 -->|"Inference"| Models3[Model System]
        
        Node1 -->|"Data"| DataAcq1[Data Acquisition]
        Node2 -->|"Data"| DataAcq2[Data Acquisition]
        Node3 -->|"Data"| DataAcq3[Data Acquisition]
        
        subgraph "Shared Storage"
            Storage[Distributed Storage]
        end
        
        Node1 -->|"Write"| Storage
        Node2 -->|"Write"| Storage
        Node3 -->|"Write"| Storage
    end
    
    classDef client fill:#4C78B5,stroke:#3A5D8C,color:white,font-weight:bold,rounded:true
    classDef loadbal fill:#F7A922,stroke:#BF821A,color:white,font-weight:bold,rounded:true
    classDef node fill:#41B883,stroke:#2D8A64,color:white,font-weight:bold,rounded:true
    classDef model fill:#7E57C2,stroke:#5E35B1,color:white,rounded:true
    classDef data fill:#F06292,stroke:#C2185B,color:white,rounded:true
    classDef storage fill:#FF8A65,stroke:#E64A19,color:white,font-weight:bold,rounded:true
    
    class Client client
    class LB loadbal
    class Node1,Node2,Node3 node
    class Models1,Models2,Models3 model
    class DataAcq1,DataAcq2,DataAcq3 data
    class Storage storage
    
    linkStyle default stroke-width:2px,fill:none,curve:basis
    linkStyle 3,4,5 stroke:#41B883,stroke-width:3px,stroke-dasharray:5 5
Loading

Best suited for:

  • Distributed databases
  • Blockchain networks
  • Distributed caching systems
  • Mission-critical applications

3. Swarmed Deployment

Ideal for globally distributed applications:

%%{init: { 'theme': 'default', 'themeVariables': { 'primaryColor': '#0F4C81', 'primaryTextColor': '#fff', 'primaryBorderColor': '#0D3E69', 'lineColor': '#0D3E69', 'secondaryColor': '#41B883', 'tertiaryColor': '#F7A922' } }}%%
graph TD
    subgraph SwarmArch["Swarmed Architecture"]
        direction TB
        
        Client[Client Applications] -->|"Load Balanced"| LB[Load Balancer]
        LB -->|"Route"| API1[API Gateway 1]
        LB -->|"Route"| API2[API Gateway 2]
        LB -->|"Route"| API3[API Gateway 3]
        
        subgraph "Manager Nodes"
            direction LR
            Manager1[Manager 1]
            Manager2[Manager 2]
            Manager3[Manager 3]
            
            Manager1 <-->|"Orchestrate"| Manager2
            Manager2 <-->|"Orchestrate"| Manager3
            Manager3 <-->|"Orchestrate"| Manager1
        end
        
        API1 -->|"Direct"| Manager1
        API2 -->|"Direct"| Manager2
        API3 -->|"Direct"| Manager3
        
        subgraph "Worker Nodes"
            direction TB
            Worker1[Worker 1]
            Worker2[Worker 2]
            Worker3[Worker 3]
            Worker4[Worker 4]
            Worker5[Worker 5]
        end
        
        Manager1 -->|"Dispatch"| Worker1
        Manager1 -->|"Dispatch"| Worker2
        Manager2 -->|"Dispatch"| Worker3
        Manager2 -->|"Dispatch"| Worker4
        Manager3 -->|"Dispatch"| Worker5
        
        subgraph "Shared Services"
            direction LR
            Registry[Container Registry]
            Config[Configuration Store]
            Secrets[Secrets Management]
            Monitoring[Monitoring & Logging]
        end
        
        Manager1 -->|"Utilize"| Registry
        Manager1 -->|"Configure"| Config
        Manager1 -->|"Secure"| Secrets
        Manager1 -->|"Monitor"| Monitoring
    end
    
    classDef client fill:#4C78B5,stroke:#3A5D8C,color:white,font-weight:bold,rounded:true
    classDef loadbal fill:#F7A922,stroke:#BF821A,color:white,font-weight:bold,rounded:true
    classDef gateway fill:#9CCC65,stroke:#7CB342,color:white,font-weight:bold,rounded:true
    classDef manager fill:#42A5F5,stroke:#1E88E5,color:white,font-weight:bold,rounded:true
    classDef worker fill:#7E57C2,stroke:#5E35B1,color:white,rounded:true
    classDef service fill:#F06292,stroke:#EC407A,color:white,font-weight:bold,rounded:true
    
    class Client client
    class LB loadbal
    class API1,API2,API3 gateway
    class Manager1,Manager2,Manager3 manager
    class Worker1,Worker2,Worker3,Worker4,Worker5 worker
    class Registry,Config,Secrets,Monitoring service
    
    linkStyle default stroke-width:2px,fill:none,curve:basis
    linkStyle 7,8,9 stroke:#42A5F5,stroke-width:3px,stroke-dasharray:5 5
Loading

Best suited for:

  • Edge computing applications
  • Content delivery networks
  • IoT device networks
  • Global data distribution

Cloud Provider Support

Each deployment pattern is supported across major cloud providers with:

Cloud Provider Features Deployment Models Hardware Support
AWS Auto-scaling, S3 integration, Lambda functions All NVIDIA GPUs, Graviton (ARM)
GCP Kubernetes, TPU support, Cloud Storage All NVIDIA GPUs, TPUs
Azure AKS, Container Apps, Blob Storage All NVIDIA GPUs, AMD MI
On-premises Custom hardware support, airgapped operation All NVIDIA GPUs, AMD MI, Intel GPUs

πŸ‘©β€πŸ’» Developer-Centric Reliability

Our memory framework provides a simple API that lets your AI systems cross-check responses against environmental facts and context, reducing hallucinations while maintaining the flexibility developers need.

For ML Engineers

  • Simple API integration with any LLM
  • Minimal latency overhead (< 100ms typical)
  • Production-ready with comprehensive logging

For System Architects

  • Horizontal scaling for high-throughput needs
  • Distributed verification architecture
  • On-premise or cloud deployment options

For Safety Teams

  • Comprehensive audit trails
  • Real-time monitoring dashboards
  • Configurable verification thresholds

πŸ”§ Technical Principles

Principle Feature Description
Context Environmental Awareness Integration of real-time situational data into inference processes
Verification Multi-source Validation Cross-checking outputs against multiple reliable data sources
Latency Minimal Processing Overhead Optimized for fast response times in time-sensitive applications
Reliability Fault-Tolerant Design Resilient architecture for operation in challenging environments

πŸ’» Usage Examples

Multi-Model Integration

from memories.models.load_model import LoadModel
from memories.models.multi_model import MultiModelInference

# Initialize multiple models for ensemble analysis
models = {
    "openai": LoadModel(model_provider="openai", model_name="gpt-4"),
    "anthropic": LoadModel(model_provider="anthropic", model_name="claude-3-opus"),
    "deepseek": LoadModel(model_provider="deepseek-ai", model_name="deepseek-coder")
}

# Create multi-model inference engine
multi_model = MultiModelInference(models=models)

# Analyze property with Earth memory integration
responses = multi_model.get_responses_with_earth_memory(
    query="Analyze environmental risks for this property",
    location={"lat": 37.7749, "lon": -122.4194},
    earth_memory_analyzers=["terrain", "climate", "water"]
)

# Compare model assessments
for provider, response in responses.items():
    print(f"\n--- {provider.upper()} ASSESSMENT ---")
    print(response["analysis"])

Earth Analyzers

from memories.core.analyzers import TerrainAnalyzer, ClimateAnalyzer, WaterResourceAnalyzer

# Initialize analyzers
terrain = TerrainAnalyzer()
climate = ClimateAnalyzer()
water = WaterResourceAnalyzer()

# Analyze location
terrain_analysis = await terrain.analyze(
    location={"lat": 37.7749, "lon": -122.4194},
    resolution="high"
)

climate_analysis = await climate.analyze(
    location={"lat": 37.7749, "lon": -122.4194},
    time_range={"start": "2020-01-01", "end": "2023-01-01"}
)

water_analysis = await water.analyze(
    location={"lat": 37.7749, "lon": -122.4194},
    include_forecast=True
)

Real Estate Analysis

from memories import MemoryStore, Config
from examples.real_estate_agent import RealEstateAgent

# Initialize memory store
config = Config(
    storage_path="./real_estate_data",
    hot_memory_size=50,
    warm_memory_size=200,
    cold_memory_size=1000
)
memory_store = MemoryStore(config)

# Initialize agent with earth memory
agent = RealEstateAgent(
    memory_store,
    enable_earth_memory=True,
    analyzers=["terrain", "climate", "water", "environmental"]
)

# Add property and analyze
property_id = await agent.add_property(property_data)
analysis = await agent.analyze_property_environment(property_id)

print(f"Property added: {property_id}")
print(f"Environmental analysis: {analysis}")

Environmental Monitoring

from memories.analyzers import ChangeDetector
from datetime import datetime, timedelta

# Initialize change detector
detector = ChangeDetector(
    baseline_date=datetime(2020, 1, 1),
    comparison_dates=[
        datetime(2021, 1, 1),
        datetime(2022, 1, 1),
        datetime(2023, 1, 1),
        datetime(2024, 1, 1)
    ]
)

# Detect environmental changes
changes = await detector.analyze_changes(
    location={"lat": 37.7749, "lon": -122.4194, "radius": 5000},
    indicators=["vegetation", "water_bodies", "urban_development"],
    visualization=True
)

# Present findings
detector.visualize_changes(changes)
detector.generate_report(changes, format="pdf")

🀝 Contributing

We welcome contributions to the memories-dev project! Please see our CONTRIBUTING.md file for guidelines on how to contribute.

πŸ“„ License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details.

Built with πŸ’œ by the memories-dev team