Deployment-ready β’ Space-hardened β’ 99.9% Reliability
memories-dev provides a robust framework for eliminating hallucinations in foundation models through real-time contextual memory integration. Built for developers requiring absolute reliability, our system ensures AI outputs are verified against factual context before delivery to your applications.
Key benefits include:
- Factual Grounding: Verify AI responses against contextual truth data in real-time
- Minimal Latency: Framework adds less than 100ms overhead to inference
- Deployment Flexibility: Horizontal scaling for high-throughput applications
- Comprehensive Verification: Multi-stage validation ensures response accuracy
These capabilities are achieved through our memory verification framework that integrates seamlessly with any AI model, providing reliable operation even in challenging environments.
- Memory Verification Framework
- Installation
- Common Issues and Solutions
- Development Setup
- Core Architecture
- Advanced Applications
- Deployment Patterns
- Developer-Centric Reliability
- Technical Principles
- Usage Examples
- Contributing
- License
Our three-stage verification framework ensures reliable AI outputs:
Prevents corrupted or invalid data from entering the memory system using advanced validation rules and structured verification protocols.
Cross-validates information using multiple sources to establish reliable ground truth. Implements consistency checks and verification algorithms for data quality.
Real-time verification of outputs against verified truth database. Applies confidence scoring to ensure response accuracy and validity.
Each stage works together to create a reliable memory system:
%%{init: { 'theme': 'default', 'themeVariables': { 'primaryColor': '#4C78B5', 'primaryTextColor': '#fff', 'primaryBorderColor': '#3A5D8C', 'lineColor': '#3A5D8C', 'secondaryColor': '#41B883', 'tertiaryColor': '#F7A922' } }}%%
graph TD
classDef inputStage fill:#3b82f6,stroke:#2563eb,stroke-width:2px,color:white,font-weight:bold,rounded:true
classDef truthStage fill:#ef4444,stroke:#dc2626,stroke-width:2px,color:white,font-weight:bold,rounded:true
classDef responseStage fill:#10b981,stroke:#059669,stroke-width:2px,color:white,font-weight:bold,rounded:true
classDef dataFlow fill:#8b5cf6,stroke:#7c3aed,stroke-width:2px,color:white,font-weight:bold,rounded:true
A[Input Data] -->|"Feed"| B[Stage 1: Input Validation]
B -->|"Process"| C[Validated Input]
C -->|"Verify"| D[Stage 2: Truth Verification]
D -->|"Confirm"| E[Verified Truth]
E -->|"Validate"| F[Stage 3: Response Validation]
F -->|"Deliver"| G[Verified Response]
B:::inputStage
D:::truthStage
F:::responseStage
A:::dataFlow
C:::dataFlow
E:::dataFlow
G:::dataFlow
linkStyle default stroke-width:2px,fill:none,stroke:#3A5D8C,curve:basis
Choose the installation option that best fits your needs:
pip install memories-dev
For CUDA 11.8:
pip install memories-dev[gpu]
For different CUDA versions, install PyTorch manually first:
# For CUDA 12.1
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
# Then install the package
pip install memories-dev[gpu]
For contributing to the project:
pip install memories-dev[dev]
For building documentation:
pip install memories-dev[docs]
conda install -c memories-dev
- For Python <3.13: Uses Shapely 1.7.0-1.8.5
- For Python β₯3.13: Uses Shapely 2.0+
- CUDA toolkit must be installed separately
- PyTorch Geometric packages are installed from wheels matching your CUDA version
If you encounter dependency conflicts:
pip install --upgrade pip
pip install memories-dev --no-deps
pip install -r requirements.txt
For some specialized features, you may need to install:
# For spatial data processing
pip install geopandas rtree pyproj
# For advanced visualization
pip install matplotlib seaborn plotly
If encountering memory-related errors:
from memories import Config
# Adjust memory tiers based on your hardware
config = Config(
hot_memory_size=4, # GB
warm_memory_size=16, # GB
cold_memory_size=64, # GB
vector_store="faiss" # Alternatives: milvus, qdrant, pgvector
)
- Clone the repository:
git clone https://github.com/Vortx-AI/memories-dev.git
cd memories-dev
- Create a virtual environment:
python -m venv venv
source venv/bin/activate # Linux/Mac
# or
.\venv\Scripts\activate # Windows
- Install development dependencies:
pip install -e .[dev]
- Install pre-commit hooks:
pre-commit install
- Run tests:
pytest tests/
- Build documentation:
cd docs
make html
The Test-Time Memory Framework integrates with your AI systems through a simple, effective process:
- AI model generates initial response
- Memory framework retrieves contextual data
- Response is verified against contextual information
- Verified response delivered to application
%%{init: { 'theme': 'default', 'themeVariables': { 'primaryColor': '#1F3A60', 'primaryTextColor': '#fff', 'primaryBorderColor': '#0F2A4C', 'lineColor': '#0F2A4C', 'secondaryColor': '#41B883', 'tertiaryColor': '#F7A922' } }}%%
sequenceDiagram
participant App as Application
participant AI as AI Model
participant MF as Memory Framework
participant CD as Contextual Data
rect rgba(64, 78, 103, 0.1)
note right of App: Request Phase
App->>+AI: Request response
AI->>AI: Generate initial response
end
rect rgba(43, 155, 128, 0.1)
note right of AI: Verification Phase
AI->>+MF: Send for verification
MF->>+CD: Retrieve contextual data
CD-->>-MF: Return relevant context
MF->>MF: Verify response against context
MF-->>-AI: Return verified response
end
rect rgba(170, 110, 40, 0.1)
note right of AI: Delivery Phase
AI-->>-App: Deliver validated response
end
note over App,CD: Complete Verification Cycle
Our multi-tiered memory system ensures optimal performance and reliability:
%%{init: { 'theme': 'default', 'themeVariables': { 'primaryColor': '#2c3e50', 'primaryTextColor': '#ecf0f1', 'primaryBorderColor': '#34495e', 'lineColor': '#3498db', 'secondaryColor': '#2980b9', 'tertiaryColor': '#1abc9c' } }}%%
graph TB
classDef primary fill:#2c3e50,stroke:#34495e,stroke-width:2px,color:white,font-weight:bold,rounded:true
classDef secondary fill:#3498db,stroke:#2980b9,stroke-width:2px,color:white,rounded:true
classDef tertiary fill:#1abc9c,stroke:#16a085,stroke-width:2px,color:white,rounded:true
A[Client Application]:::primary -->|"Requests"| B[Memory Manager]:::primary
B -->|"Collects"| C[Data Acquisition]:::secondary
B -->|"Stores"| D[Memory Store]:::secondary
B -->|"Analyzes"| E[Earth Analyzers]:::secondary
B -->|"Integrates"| F[AI Integration]:::secondary
C -->|"Satellite"| C1[Satellite Data]:::tertiary
C -->|"Vector"| C2[Vector Data]:::tertiary
C -->|"IoT"| C3[Sensor Data]:::tertiary
C -->|"External"| C4[Environmental APIs]:::tertiary
D -->|"Fast Access"| D1[Hot Memory]:::tertiary
D -->|"Regular Access"| D2[Warm Memory]:::tertiary
D -->|"Infrequent Access"| D3[Cold Memory]:::tertiary
D -->|"Archival"| D4[Glacier Storage]:::tertiary
E -->|"Elevation"| E1[Terrain Analysis]:::tertiary
E -->|"Weather"| E2[Climate Analysis]:::tertiary
E -->|"Impact"| E3[Environmental Impact]:::tertiary
E -->|"Development"| E4[Urban Development]:::tertiary
F -->|"LLM"| F1[Model Connectors]:::tertiary
F -->|"Context"| F2[Context Formation]:::tertiary
F -->|"Prompts"| F3[Prompt Engineering]:::tertiary
F -->|"Validation"| F4[Response Validation]:::tertiary
linkStyle default stroke-width:2px,fill:none,stroke:#3498db,curve:basis
Our comprehensive data flow architecture transforms raw observation data into actionable intelligence:
%%{init: {'theme': 'dark', 'themeVariables': { 'primaryColor': '#0f172a', 'primaryTextColor': '#f8fafc', 'primaryBorderColor': '#334155', 'lineColor': '#3b82f6', 'secondaryColor': '#10b981', 'tertiaryColor': '#8b5cf6'}}}%%
graph LR
classDef ingestion fill:#1d4ed8,stroke:#1e40af,stroke-width:2px,color:white,font-weight:bold,rounded:true
classDef processing fill:#b91c1c,stroke:#991b1b,stroke-width:2px,color:white,font-weight:bold,rounded:true
classDef storage fill:#047857,stroke:#065f46,stroke-width:2px,color:white,font-weight:bold,rounded:true
classDef analytics fill:#7c3aed,stroke:#6d28d9,stroke-width:2px,color:white,font-weight:bold,rounded:true
classDef delivery fill:#9a3412,stroke:#9a3412,stroke-width:2px,color:white,font-weight:bold,rounded:true
%% Data Ingestion Nodes
A1[Satellite Imagery] -.->|"Raw Data"| A
A2[Vector Databases] -.->|"Spatial"| A
A3[Sensor Networks] -.->|"IoT"| A
A4[Environmental APIs] -.->|"External"| A
A[Data Ingestion Engine] ==>|"Input"| B
%% Data Processing Nodes
B ==>|"Process"| B1[Data Cleaning]
B ==>|"Extract"| B2[Feature Extraction]
B ==>|"Time Align"| B3[Temporal Alignment]
B ==>|"Geo Register"| B4[Spatial Registration]
B[Multi-Modal Processing] ==>|"Transform"| C
%% Storage Nodes
C ==>|"Immediate"| C1[Hot Memory Cache]
C ==>|"Regular"| C2[Warm Vector Store]
C ==>|"Archive"| C3[Cold Object Storage]
C ==>|"Deep Archive"| C4[Glacier Archive]
C[Adaptive Memory System] ==>|"Store"| D
%% Analytics Nodes
D ==>|"Spatial"| D1[Geospatial Analytics]
D ==>|"Temporal"| D2[Time Series Analytics]
D ==>|"Evolution"| D3[Change Detection]
D ==>|"Patterns"| D4[Correlation Engine]
D[Earth Intelligence Suite] ==>|"Analyze"| E
%% Delivery Nodes
E ==>|"Models"| E1[AI Model Integration]
E ==>|"Services"| E2[Application APIs]
E ==>|"Visual"| E3[Visualization Tools]
E ==>|"Export"| E4[Export Services]
E[Insight Delivery] ==>|"Decide"| F
F[Decision Intelligence]
%% Classifications
A1:::ingestion
A2:::ingestion
A3:::ingestion
A4:::ingestion
A:::ingestion
B1:::processing
B2:::processing
B3:::processing
B4:::processing
B:::processing
C1:::storage
C2:::storage
C3:::storage
C4:::storage
C:::storage
D1:::analytics
D2:::analytics
D3:::analytics
D4:::analytics
D:::analytics
E1:::delivery
E2:::delivery
E3:::delivery
E4:::delivery
E:::delivery
F:::delivery
linkStyle 0,1,2,3 stroke:#1d4ed8,stroke-width:1.5px,stroke-dasharray:3,curve:basis;
linkStyle 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 stroke-width:3px,fill:none,curve:basis;
Our satellite-verified memory system powers a wide range of cutting-edge AI applications where factual grounding and reliability are mission-critical:
Enhance pre-launch verification with AI that can validate mission parameters against physical constraints, preventing costly errors before they reach orbit.
Enable autonomous spacecraft to make reliable decisions during communication blackouts by maintaining factual context about their environment and mission parameters.
Process satellite telemetry and science data with context-aware AI that can detect anomalies, classify observations, and prioritize findings without hallucinations.
Ground exploration robots maintain accurate terrain understanding and mission objectives even with delayed or limited communication with control systems.
Enable robotic construction and manufacturing with AI that maintains accurate spatial awareness and operation plans verified against physical constraints.
In medical diagnostics and treatment planning, our memory framework ensures AI systems provide accurate recommendations by verifying outputs against real-time patient data and established medical protocols.
For autonomous vehicles, air traffic control, and logistics management, our framework helps reduce decision errors by incorporating real-time environmental data into AI decision processes.
For algorithmic trading, fraud detection, and risk assessment, our technology helps prevent costly errors by verifying AI decisions against current market conditions and regulatory requirements.
memories.dev supports three powerful deployment patterns to meet diverse operational needs:
Optimized for single-tenant applications requiring maximum performance:
%%{init: { 'theme': 'default', 'themeVariables': { 'primaryColor': '#0F4C81', 'primaryTextColor': '#fff', 'primaryBorderColor': '#0D3E69', 'lineColor': '#0D3E69', 'secondaryColor': '#41B883', 'tertiaryColor': '#F7A922' } }}%%
graph TD
subgraph Architecture["Standalone Architecture"]
direction TB
Client[Client Applications] -->|"Requests"| API[API Gateway]
API -->|"Process"| Server[Memories Server]
Server -->|"Inference"| Models[Model System]
Server -->|"Data"| DataAcq[Data Acquisition]
Models -->|"Local"| LocalModels[Local Models]
Models -->|"External"| APIModels[API-based Models]
DataAcq -->|"Vector"| VectorData[Vector Data Sources]
DataAcq -->|"Earth"| SatelliteData[Satellite Data]
Server -->|"Persist"| Storage[Persistent Storage]
end
classDef client fill:#4C78B5,stroke:#3A5D8C,color:white,font-weight:bold,rounded:true
classDef server fill:#41B883,stroke:#2D8A64,color:white,font-weight:bold,rounded:true
classDef model fill:#F7A922,stroke:#BF821A,color:white,rounded:true
classDef data fill:#F06292,stroke:#C2185B,color:white,rounded:true
classDef storage fill:#7E57C2,stroke:#5E35B1,color:white,rounded:true
class Client client
class API,Server server
class Models,LocalModels,APIModels model
class DataAcq,VectorData,SatelliteData data
class Storage storage
linkStyle default stroke-width:2px,fill:none,curve:basis
Best suited for:
- High-performance computing workloads
- Machine learning model inference
- Real-time data processing
- Direct hardware access
Perfect for distributed systems requiring strong consistency:
%%{init: { 'theme': 'default', 'themeVariables': { 'primaryColor': '#0F4C81', 'primaryTextColor': '#fff', 'primaryBorderColor': '#0D3E69', 'lineColor': '#0D3E69', 'secondaryColor': '#41B883', 'tertiaryColor': '#F7A922' } }}%%
graph TD
subgraph ConsensusArch["Consensus Architecture"]
direction TB
Client[Client Applications] -->|"Load Balanced"| LB[Load Balancer]
LB -->|"Route"| Node1[Node 1]
LB -->|"Route"| Node2[Node 2]
LB -->|"Route"| Node3[Node 3]
subgraph "Consensus Group"
direction LR
Node1 <-->|"Sync"| Node2
Node2 <-->|"Sync"| Node3
Node3 <-->|"Sync"| Node1
end
Node1 -->|"Inference"| Models1[Model System]
Node2 -->|"Inference"| Models2[Model System]
Node3 -->|"Inference"| Models3[Model System]
Node1 -->|"Data"| DataAcq1[Data Acquisition]
Node2 -->|"Data"| DataAcq2[Data Acquisition]
Node3 -->|"Data"| DataAcq3[Data Acquisition]
subgraph "Shared Storage"
Storage[Distributed Storage]
end
Node1 -->|"Write"| Storage
Node2 -->|"Write"| Storage
Node3 -->|"Write"| Storage
end
classDef client fill:#4C78B5,stroke:#3A5D8C,color:white,font-weight:bold,rounded:true
classDef loadbal fill:#F7A922,stroke:#BF821A,color:white,font-weight:bold,rounded:true
classDef node fill:#41B883,stroke:#2D8A64,color:white,font-weight:bold,rounded:true
classDef model fill:#7E57C2,stroke:#5E35B1,color:white,rounded:true
classDef data fill:#F06292,stroke:#C2185B,color:white,rounded:true
classDef storage fill:#FF8A65,stroke:#E64A19,color:white,font-weight:bold,rounded:true
class Client client
class LB loadbal
class Node1,Node2,Node3 node
class Models1,Models2,Models3 model
class DataAcq1,DataAcq2,DataAcq3 data
class Storage storage
linkStyle default stroke-width:2px,fill:none,curve:basis
linkStyle 3,4,5 stroke:#41B883,stroke-width:3px,stroke-dasharray:5 5
Best suited for:
- Distributed databases
- Blockchain networks
- Distributed caching systems
- Mission-critical applications
Ideal for globally distributed applications:
%%{init: { 'theme': 'default', 'themeVariables': { 'primaryColor': '#0F4C81', 'primaryTextColor': '#fff', 'primaryBorderColor': '#0D3E69', 'lineColor': '#0D3E69', 'secondaryColor': '#41B883', 'tertiaryColor': '#F7A922' } }}%%
graph TD
subgraph SwarmArch["Swarmed Architecture"]
direction TB
Client[Client Applications] -->|"Load Balanced"| LB[Load Balancer]
LB -->|"Route"| API1[API Gateway 1]
LB -->|"Route"| API2[API Gateway 2]
LB -->|"Route"| API3[API Gateway 3]
subgraph "Manager Nodes"
direction LR
Manager1[Manager 1]
Manager2[Manager 2]
Manager3[Manager 3]
Manager1 <-->|"Orchestrate"| Manager2
Manager2 <-->|"Orchestrate"| Manager3
Manager3 <-->|"Orchestrate"| Manager1
end
API1 -->|"Direct"| Manager1
API2 -->|"Direct"| Manager2
API3 -->|"Direct"| Manager3
subgraph "Worker Nodes"
direction TB
Worker1[Worker 1]
Worker2[Worker 2]
Worker3[Worker 3]
Worker4[Worker 4]
Worker5[Worker 5]
end
Manager1 -->|"Dispatch"| Worker1
Manager1 -->|"Dispatch"| Worker2
Manager2 -->|"Dispatch"| Worker3
Manager2 -->|"Dispatch"| Worker4
Manager3 -->|"Dispatch"| Worker5
subgraph "Shared Services"
direction LR
Registry[Container Registry]
Config[Configuration Store]
Secrets[Secrets Management]
Monitoring[Monitoring & Logging]
end
Manager1 -->|"Utilize"| Registry
Manager1 -->|"Configure"| Config
Manager1 -->|"Secure"| Secrets
Manager1 -->|"Monitor"| Monitoring
end
classDef client fill:#4C78B5,stroke:#3A5D8C,color:white,font-weight:bold,rounded:true
classDef loadbal fill:#F7A922,stroke:#BF821A,color:white,font-weight:bold,rounded:true
classDef gateway fill:#9CCC65,stroke:#7CB342,color:white,font-weight:bold,rounded:true
classDef manager fill:#42A5F5,stroke:#1E88E5,color:white,font-weight:bold,rounded:true
classDef worker fill:#7E57C2,stroke:#5E35B1,color:white,rounded:true
classDef service fill:#F06292,stroke:#EC407A,color:white,font-weight:bold,rounded:true
class Client client
class LB loadbal
class API1,API2,API3 gateway
class Manager1,Manager2,Manager3 manager
class Worker1,Worker2,Worker3,Worker4,Worker5 worker
class Registry,Config,Secrets,Monitoring service
linkStyle default stroke-width:2px,fill:none,curve:basis
linkStyle 7,8,9 stroke:#42A5F5,stroke-width:3px,stroke-dasharray:5 5
Best suited for:
- Edge computing applications
- Content delivery networks
- IoT device networks
- Global data distribution
Each deployment pattern is supported across major cloud providers with:
Cloud Provider | Features | Deployment Models | Hardware Support |
---|---|---|---|
AWS | Auto-scaling, S3 integration, Lambda functions | All | NVIDIA GPUs, Graviton (ARM) |
GCP | Kubernetes, TPU support, Cloud Storage | All | NVIDIA GPUs, TPUs |
Azure | AKS, Container Apps, Blob Storage | All | NVIDIA GPUs, AMD MI |
On-premises | Custom hardware support, airgapped operation | All | NVIDIA GPUs, AMD MI, Intel GPUs |
Our memory framework provides a simple API that lets your AI systems cross-check responses against environmental facts and context, reducing hallucinations while maintaining the flexibility developers need.
- Simple API integration with any LLM
- Minimal latency overhead (< 100ms typical)
- Production-ready with comprehensive logging
- Horizontal scaling for high-throughput needs
- Distributed verification architecture
- On-premise or cloud deployment options
- Comprehensive audit trails
- Real-time monitoring dashboards
- Configurable verification thresholds
Principle | Feature | Description |
---|---|---|
Context | Environmental Awareness | Integration of real-time situational data into inference processes |
Verification | Multi-source Validation | Cross-checking outputs against multiple reliable data sources |
Latency | Minimal Processing Overhead | Optimized for fast response times in time-sensitive applications |
Reliability | Fault-Tolerant Design | Resilient architecture for operation in challenging environments |
from memories.models.load_model import LoadModel
from memories.models.multi_model import MultiModelInference
# Initialize multiple models for ensemble analysis
models = {
"openai": LoadModel(model_provider="openai", model_name="gpt-4"),
"anthropic": LoadModel(model_provider="anthropic", model_name="claude-3-opus"),
"deepseek": LoadModel(model_provider="deepseek-ai", model_name="deepseek-coder")
}
# Create multi-model inference engine
multi_model = MultiModelInference(models=models)
# Analyze property with Earth memory integration
responses = multi_model.get_responses_with_earth_memory(
query="Analyze environmental risks for this property",
location={"lat": 37.7749, "lon": -122.4194},
earth_memory_analyzers=["terrain", "climate", "water"]
)
# Compare model assessments
for provider, response in responses.items():
print(f"\n--- {provider.upper()} ASSESSMENT ---")
print(response["analysis"])
from memories.core.analyzers import TerrainAnalyzer, ClimateAnalyzer, WaterResourceAnalyzer
# Initialize analyzers
terrain = TerrainAnalyzer()
climate = ClimateAnalyzer()
water = WaterResourceAnalyzer()
# Analyze location
terrain_analysis = await terrain.analyze(
location={"lat": 37.7749, "lon": -122.4194},
resolution="high"
)
climate_analysis = await climate.analyze(
location={"lat": 37.7749, "lon": -122.4194},
time_range={"start": "2020-01-01", "end": "2023-01-01"}
)
water_analysis = await water.analyze(
location={"lat": 37.7749, "lon": -122.4194},
include_forecast=True
)
from memories import MemoryStore, Config
from examples.real_estate_agent import RealEstateAgent
# Initialize memory store
config = Config(
storage_path="./real_estate_data",
hot_memory_size=50,
warm_memory_size=200,
cold_memory_size=1000
)
memory_store = MemoryStore(config)
# Initialize agent with earth memory
agent = RealEstateAgent(
memory_store,
enable_earth_memory=True,
analyzers=["terrain", "climate", "water", "environmental"]
)
# Add property and analyze
property_id = await agent.add_property(property_data)
analysis = await agent.analyze_property_environment(property_id)
print(f"Property added: {property_id}")
print(f"Environmental analysis: {analysis}")
from memories.analyzers import ChangeDetector
from datetime import datetime, timedelta
# Initialize change detector
detector = ChangeDetector(
baseline_date=datetime(2020, 1, 1),
comparison_dates=[
datetime(2021, 1, 1),
datetime(2022, 1, 1),
datetime(2023, 1, 1),
datetime(2024, 1, 1)
]
)
# Detect environmental changes
changes = await detector.analyze_changes(
location={"lat": 37.7749, "lon": -122.4194, "radius": 5000},
indicators=["vegetation", "water_bodies", "urban_development"],
visualization=True
)
# Present findings
detector.visualize_changes(changes)
detector.generate_report(changes, format="pdf")
We welcome contributions to the memories-dev project! Please see our CONTRIBUTING.md file for guidelines on how to contribute.
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.
Built with π by the memories-dev team