-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 8ac85af
Showing
9 changed files
with
989 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
% Grey Wold Optimizer (GWO) source codes version 1.1 % | ||
% % | ||
% Developed in MATLAB R2011b(7.13) % | ||
% % | ||
% Author and programmer: Seyedali Mirjalili % | ||
% % | ||
% e-Mail: ali.mirjalili@gmail.com % | ||
% seyedali.mirjalili@griffithuni.edu.au % | ||
% % | ||
% Homepage: http://www.alimirjalili.com/GWO.html % | ||
% % | ||
% Main paper: S. Mirjalili, S. M. Mirjalili, A. Lewis % | ||
% Grey Wolf Optimizer, Advances in Engineering % | ||
% Software, Volume 69, March 2014, Pages 46-61, % | ||
% http://dx.doi.org/10.1016/j.advengsoft.2013.12.007 % | ||
% % | ||
|
||
% Grey Wolf Optimizer | ||
function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj,handles,Value) | ||
|
||
% initialize alpha, beta, and delta_pos | ||
Alpha_pos=zeros(1,dim); | ||
Alpha_score=inf; %change this to -inf for maximization problems | ||
|
||
Beta_pos=zeros(1,dim); | ||
Beta_score=inf; %change this to -inf for maximization problems | ||
|
||
Delta_pos=zeros(1,dim); | ||
Delta_score=inf; %change this to -inf for maximization problems | ||
|
||
%Initialize the positions of search agents | ||
Positions=initialization(SearchAgents_no,dim,ub,lb); | ||
|
||
%Convergence_curve=zeros(1,Max_iter); | ||
|
||
l=0;% Loop counter | ||
|
||
% Main loop | ||
while l<Max_iter | ||
for i=1:size(Positions,1) | ||
|
||
% Calculate objective function for each search agent | ||
fitness=fobj(Positions(i,:)); | ||
All_fitness(1,i)=fitness; | ||
|
||
% Update Alpha, Beta, and Delta | ||
if fitness<Alpha_score | ||
Alpha_score=fitness; % Update alpha | ||
Alpha_pos=Positions(i,:); | ||
end | ||
|
||
if fitness>Alpha_score && fitness<Beta_score | ||
Beta_score=fitness; % Update beta | ||
Beta_pos=Positions(i,:); | ||
end | ||
|
||
if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score | ||
Delta_score=fitness; % Update delta | ||
Delta_pos=Positions(i,:); | ||
end | ||
end | ||
|
||
|
||
a=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0 | ||
|
||
% Update the Position of search agents including omegas | ||
for i=1:size(Positions,1) | ||
for j=1:size(Positions,2) | ||
|
||
r1=rand(); % r1 is a random number in [0,1] | ||
r2=rand(); % r2 is a random number in [0,1] | ||
|
||
A1=2*a*r1-a; % Equation (3.3) | ||
C1=2*r2; % Equation (3.4) | ||
|
||
D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1 | ||
X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1 | ||
|
||
r1=rand(); | ||
r2=rand(); | ||
|
||
A2=2*a*r1-a; % Equation (3.3) | ||
C2=2*r2; % Equation (3.4) | ||
|
||
D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2 | ||
X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2 | ||
|
||
r1=rand(); | ||
r2=rand(); | ||
|
||
A3=2*a*r1-a; % Equation (3.3) | ||
C3=2*r2; % Equation (3.4) | ||
|
||
D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3 | ||
X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3 | ||
|
||
Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7) | ||
|
||
end | ||
|
||
% Return back the search agents that go beyond the boundaries of the search space | ||
Flag4ub=Positions(i,:)>ub; | ||
Flag4lb=Positions(i,:)<lb; | ||
Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb; | ||
end | ||
l=l+1; | ||
Convergence_curve(l)=Alpha_score; | ||
if l>1 | ||
line([l-1 l], [Convergence_curve(l-1) Convergence_curve(l)],'Color','b') | ||
xlabel('Iteration'); | ||
ylabel('Best score obtained so far'); | ||
drawnow | ||
end | ||
|
||
|
||
set(handles.itertext,'String', ['The current iteration is ', num2str(l)]) | ||
set(handles.optimumtext,'String', ['The current optimal value is ', num2str(Alpha_score)]) | ||
if Value==1 | ||
hold on | ||
scatter(l*ones(1,SearchAgents_no),All_fitness,'.','k') | ||
end | ||
end | ||
|
||
|
||
|
Binary file not shown.
Oops, something went wrong.