Skip to content

Experiments

Aleksandr Perevalov edited this page Aug 25, 2020 · 8 revisions

DBpedia

Original dataset (English)


Model: bert-base-cased

Test set: dbpedia_df.sample(4400, random_state=42)

Evaluation results:
-------------------
Category prediction (based on 4380 questions)
  Accuracy: 0.969
Type ranking (based on 3573 questions)
  NDCG@5:  0.533
  NDCG@10: 0.499

Multilingual dataset


!!! Wrong type order

Model: bert-base-multilingual-cased

Test set: dbpedia_df.sample(4400, random_state=42)

Evaluation results:
-------------------
Category prediction (based on 4380 questions)
  Accuracy: 0.969
Type ranking (based on 3577 questions)
  NDCG@5:  0.674
  NDCG@10: 0.632

Model: bert-base-multilingual-cased

Test set: dbpedia_df.sample(4400, random_state=42)

Evaluation results:
-------------------
Category prediction (based on 4380 questions)
  Accuracy: 0.968
Type ranking (based on 3576 questions)
  NDCG@5:  0.704
  NDCG@10: 0.661

Model: bert-base-multilingual-cased

Test set: dbpedia_df.sample(4400, random_state=42)

Prediction mode: make predictions for each language, then choose one using majority vote

Evaluation results:
-------------------
Category prediction (based on 4380 questions)
  Accuracy: 0.962
Type ranking (based on 3547 questions)
  NDCG@5:  0.708
  NDCG@10: 0.665

Reverse translation dataset (English)


Model: bert-base-cased

Test set: dbpedia_df.sample(4400, random_state=42)

Evaluation results:
-------------------
Category prediction (based on 4380 questions)
  Accuracy: 0.357
Type ranking (based on 1045 questions)
  NDCG@5:  0.165
  NDCG@10: 0.140

DBpedia Spotlight annotated dataset (English)

Model: bert-base-cased

Test set: dbpedia_df.sample(4400, random_state=42) (annotated as test)

Evaluation results:
-------------------
Category prediction (based on 1902 questions)
  Accuracy: 0.964
Type ranking (based on 1482 questions)
  NDCG@5:  0.749
  NDCG@10: 0.714

Model: bert-base-cased

Test set: (original)

dbpedia_df = pd.read_csv("/kaggle/input/test-06366/dbpedia-annotated.csv".format(dbpedia_path), sep="|")
dbpedia_df['original_id'] = dbpedia_df.id.apply(lambda x: x.split('-')[0])
dbpedia_faketest_df = dbpedia_df.sample(4400, random_state=42)

dbpedia_orig_df = pd.read_csv("/kaggle/input/test-06366/dbpedia.csv".format(dbpedia_path), sep="|")
dbpedia_faketest_df = dbpedia_orig_df[dbpedia_orig_df.id.isin(dbpedia_faketest_df.original_id.values)]
Evaluation results:
-------------------
Category prediction (based on 1902 questions)
  Accuracy: 0.973
Type ranking (based on 1499 questions)
  NDCG@5:  0.740
  NDCG@10: 0.706