Skip to content

C3-SL: Circular Convolution-Based Batch-Wise Compression for Communication-Efficient Split Learning (IEEE MLSP 2022)

Notifications You must be signed in to change notification settings

WesleyHsieh0806/C3-SL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

C3-SL: Circular Convolution-Based Batch-Wise Compression for Communication-Efficient Split Learning

This repository provides the official Pytorch implementation for C3-SL.

📎 Paper Link ✏️ Citations

C3-SL Framework


  • Batch-Wise Compression (A new Compression Paradigm for Split Learning)
  • Exploit Circular Convolution and Orthogonality of features to avoid information loss
  • Reduce 1152x memory and 2.25x computation overhead compared to the SOTA dimension-wise compression method

Presentation Video : Click here


Table of Contents


📚 Prepare Dataset

The source code can be found in CIFAR-10/data preprocess src and CIFAR-100/data preprocess src.

Tasks Datasets:point_down:
Image Classification CIFAR-10, CIFAR-100
  • Use the following commands:
$ cd CIFAR10  # or cd CIFAR100
$ cd "data preprocess src"    
$ python download_data.py
  • The data structure should be formatted like this:
CIFAR10(Current dir)
├──CIFAR
│   ├── train
│   ├── val
├──data preprocess src
│   ├── download_data.py

🏃 Usage - Training

Requirements

  • Python 3.6
  • Pytorch 1.4.0
  • torchvision
  • CUDA 10.2
  • tensorflow_datasets
  • Other dependencies: numpy, matplotlib, tensorflow

Training

Modify parameters in the shell script.

Parameters Definition
--batch batch size
--epoch number of training epochs
--dump_path save path of experiment logs and checkpoints
--arch model architecture (resnet50/vgg16)
--split the split point of model
--bcr Batch Compression Ratio R
cd CIFAR10/C3-SL
./train.sh

📈 Experiment Overview

  • Comparable Accuracy with SOTA
  • Greatly Reduce Resource Overhead
Experiment


Citations

@article{hsieh2022c3,
  title={C3-SL: Circular Convolution-Based Batch-Wise Compression for Communication-Efficient Split Learning},
  author={Hsieh, Cheng-Yen and Chuang, Yu-Chuan and others},
  journal={arXiv preprint arXiv:2207.12397},
  year={2022}
}

About

C3-SL: Circular Convolution-Based Batch-Wise Compression for Communication-Efficient Split Learning (IEEE MLSP 2022)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published