Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Minha nova branch #77

Open
wants to merge 71 commits into
base: TalitaCB-patch-1
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
71 commits
Select commit Hold shift + click to select a range
358d4f7
Merge pull request #1 from WoMakersCode/TalitaCB-patch-1
TalitaCB Oct 18, 2019
87ac498
Adicionando Pasta
TalitaCB Oct 18, 2019
6fd2362
Adicionando pasta
TalitaCB Oct 18, 2019
ad36934
Rename 3. Modelos regressivos/bmi_and_life_expectancy.csv to 3. Model…
TalitaCB Oct 18, 2019
c599454
Adicionando ex 2
TalitaCB Oct 18, 2019
3c1ae76
Rename 3. Modelos regressivos/Boston Houses Prices.ipynb to 3. Modelo…
TalitaCB Oct 18, 2019
d3bb04c
Rename 3. Modelos regressivos/[Solução]Boston Houses Prices.ipynb t…
TalitaCB Oct 18, 2019
7b9d0ed
Adicionando exercício de Regressão Polinomial
TalitaCB Oct 18, 2019
7bd12bb
Rename 3. Modelos regressivos/Regressão Polinomial.ipynb to 3. Model…
TalitaCB Oct 18, 2019
dda9645
Add files via upload
TalitaCB Oct 18, 2019
21657d5
Add files via upload
TalitaCB Oct 18, 2019
02db35a
Rename 3. Modelos regressivos/Feature Scaling.ipynb to 3. Modelos reg…
TalitaCB Oct 18, 2019
1f55c48
Add files via upload
TalitaCB Oct 18, 2019
016f619
Adicionando arquivo diferenciaçao
TalitaCB Oct 22, 2019
6e7d3ed
Rename 3. Modelos regressivos/Exercicio_5/Feature Scaling.ipynb to 3.…
TalitaCB Oct 24, 2019
31c0045
Rename 3. Modelos regressivos/Exercicio_5/[Solução]Feature Scaling.…
TalitaCB Oct 24, 2019
2f8ece0
exercicios regressao
Oct 24, 2019
4ab9e40
Merge branch 'master' of https://github.com/WoMakersCode/data-science…
Oct 24, 2019
43dfdee
Mudando de pasta
TalitaCB Oct 24, 2019
35c7bb7
Merge branch 'master' of https://github.com/WoMakersCode/data-science…
TalitaCB Oct 24, 2019
dfe40ac
Adicionando pasta diferenciação
TalitaCB Oct 24, 2019
d19a776
Adicionando autoregressão
TalitaCB Oct 25, 2019
e055fcd
Adicionando ARIMA
TalitaCB Oct 25, 2019
12aaf69
Atualizando exercícios - regressão
Oct 26, 2019
f9134e4
Merge branch 'master' of https://github.com/WoMakersCode/data-science…
Oct 26, 2019
1e2684a
Incluindo mais um exercicio arima
TalitaCB Oct 26, 2019
e47dfd5
Merge branch 'master' of https://github.com/WoMakersCode/data-science…
TalitaCB Oct 26, 2019
eb4920d
retirando exercicio shampoo
TalitaCB Oct 26, 2019
527a7dc
retirando arquivo
TalitaCB Oct 26, 2019
1016352
Alteraçoes
TalitaCB Oct 26, 2019
9629c12
Alteraçoes
TalitaCB Oct 26, 2019
8615b5e
Mudancas 2
TalitaCB Oct 26, 2019
0fc7476
ex
TalitaCB Oct 26, 2019
43cf609
ex.2
TalitaCB Oct 26, 2019
ecbd507
feature scaling
TalitaCB Oct 26, 2019
16c0f4c
melhorando feature scaling
TalitaCB Oct 26, 2019
d896158
slides da aula - regressão
Oct 27, 2019
4800d9d
Aula de spark (#2)
cimarieta Nov 4, 2019
d0ceb26
Update README.md
cimarieta Nov 4, 2019
6a261a3
Update README.md
cimarieta Nov 4, 2019
3ca8dfe
Update README.md
cimarieta Nov 5, 2019
a874277
Update README.md
cimarieta Nov 5, 2019
94d9bd2
Update README.md
cimarieta Nov 5, 2019
7698a86
Adiciona mais materiais da aula de spark
cimarieta Nov 5, 2019
9da589d
adiciona dataset, slides e notebook
vivianyamassaki Nov 9, 2019
50630be
Merge pull request #4 from vivianyamassaki/master
vivianyamassaki Nov 9, 2019
99bc878
adiciona as correções no material
vivianyamassaki Nov 10, 2019
249eac8
Merge pull request #5 from vivianyamassaki/master
vivianyamassaki Nov 10, 2019
e1462cf
Add visualization answers
bahbbc Nov 11, 2019
9868653
adiciona gabarito
vivianyamassaki Nov 13, 2019
ec9f8ad
adicionando aula de ensemble
jessica-santos Nov 15, 2019
896680c
adiciona dataset
vivianyamassaki Nov 15, 2019
735ce78
remove aula errada :P
vivianyamassaki Nov 15, 2019
bb38ca1
Merge pull request #6 from vivianyamassaki/master
vivianyamassaki Nov 15, 2019
a7c16c0
adiciona notebook e slides
vivianyamassaki Nov 15, 2019
f3d63a1
Merge pull request #7 from vivianyamassaki/master
vivianyamassaki Nov 15, 2019
ab74fd5
Update README.md
miohana Nov 15, 2019
7dded4e
Merge pull request #8 from miohana/master
miohana Nov 15, 2019
5061009
Adicionando slides
jessica-santos Nov 16, 2019
0798773
adiciona gabarito
vivianyamassaki Nov 16, 2019
7409057
Merge pull request #9 from vivianyamassaki/master
vivianyamassaki Nov 16, 2019
4597851
correcao de slides e add gabarito ensemble
jessica-santos Nov 16, 2019
d8c9203
Merge branch 'master' of https://github.com/WoMakersCode/data-science…
jessica-santos Nov 16, 2019
30a5d6d
adicionando slides e notebooks da aula de deep learning
jessica-santos Nov 23, 2019
c535ee6
Adicionando csv corrigido
jessica-santos Nov 23, 2019
2b77a19
Adicionando base nlp
jessica-santos Nov 23, 2019
8a2971d
adicionando gabarito nlp
jessica-santos Nov 23, 2019
017fd4a
Adiciona slides
vivianyamassaki Nov 25, 2019
ff06afc
adiciona slides
vivianyamassaki Nov 25, 2019
b6fef0f
Adiciona dados
vivianyamassaki Nov 25, 2019
4ba6451
Merge pull request #10 from vivianyamassaki/master
vivianyamassaki Nov 25, 2019
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added .DS_Store
Binary file not shown.
1,736 changes: 1,736 additions & 0 deletions 2.1 Análise de Dados em Python/DataVisualizationAnswers.ipynb

Large diffs are not rendered by default.

8,051 changes: 8,051 additions & 0 deletions 2.1 Análise de Dados em Python/PandasStructuredData-Answers.ipynb

Large diffs are not rendered by default.

Binary file added 3. Modelos regressivos/.DS_Store
Binary file not shown.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# #Importe as bibliotecas que você irá usar\n",
"import pandas as pd\n",
"from sklearn.linear_model import LinearRegression\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"#Carregue os dados\n",
"#Insira o data frame nessa váriavel\n",
"bmi_life_data = pd.read_csv(\"bmi_and_life_expectancy.csv\")\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,\n",
" normalize=False)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Execute o .fit do modelo e insira na variavel bmi_life_model\n",
"bmi_life_model = LinearRegression()\n",
"bmi_life_model.fit(bmi_life_data[['BMI']], bmi_life_data[['Life expectancy']])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"#Faça predições usando o modelo para uma expectativa de vida de 21,07931\n",
"laos_life_exp = bmi_life_model.predict([[21.07931]])"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[60.31564716]]\n"
]
}
],
"source": [
"print(laos_life_exp)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -15,7 +15,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -26,24 +26,52 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 3,
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/plain": [
"LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,\n",
" normalize=False)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Execute o .fit do modelo e insira na variavel bmi_life_model\n",
"bmi_life_model = LinearRegression()\n",
"bmi_life_model.fit(bmi_life_data[['BMI']], bmi_life_data[['Life expectancy']])\n",
"\n"
"bmi_life_model.fit(bmi_life_data[['BMI']], bmi_life_data[['Life expectancy']])"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"#Faça predições usando o modelo para uma expectativa de vida de 21,07931\n",
"laos_life_exp = bmi_life_model.predict(21.07931)"
"laos_life_exp = bmi_life_model.predict([[21.07931]])"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[60.31564716]]\n"
]
}
],
"source": [
"print(laos_life_exp)"
]
}
],
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# #Importe as bibliotecas que você irá usar\n",
"import pandas as pd\n",
"from sklearn.linear_model import LinearRegression\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"#Carregue os dados\n",
"#Insira o data frame nessa váriavel\n",
"bmi_life_data = pd.read_csv(\"bmi_and_life_expectancy.csv\")\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,\n",
" normalize=False)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Execute o .fit do modelo e insira na variavel bmi_life_model\n",
"bmi_life_model = LinearRegression()\n",
"bmi_life_model.fit(bmi_life_data[['BMI']], bmi_life_data[['Life expectancy']])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"#Faça predições usando o modelo para uma expectativa de vida de 21,07931\n",
"laos_life_exp = bmi_life_model.predict([[21.07931]])"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[60.31564716]]\n"
]
}
],
"source": [
"print(laos_life_exp)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading