Skip to content

XLI-2020/CMPP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

43 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Modeling and Monitoring of Indoor Populations using Sparse Positioning Data

Implementation Details

The implementation concerns 4 folders which are:

  • preprocess: generate probabilistic populations.
  • estimators: population prediction models
  • input: population dataset
  • query: CMPP query

Requirements

  • Pytorch 1.8.1
  • Numpy 1.19.2
  • Pandas 1.1.3
  • Sklearn 0.24.1
  • Matplotlib 3.3.2
  • networkx 2.8.4

You may use " pip3 install -r requirements.txt" to install the above libraries.

Usage

To generate probabilistic populations:

cd ./preprocess; nohup python3 -u generate_populations.py > population.log &

To train and test population prediction models (e.g., ME):

cd ../estimators/; nohup python3  -u ME.py --epochs 500 --batch_size 64 --time_interval five_mins > ME.log  &

To run CMPP query (e.g., varying \theta):

cd ../query; java -cp CMPP-0.0.1-SNAPSHOT.jar experiments.Experiment_Pop

or you may run it in IDE (e.g., IntelliJ IDEA). Multiple csv files will be generated to record the f1-score, response time, and memory usage respectively.

Explaination of Parameters

time_interval: prediction time interval (i.e., \delta)

batch_size: the number of samples for back propagation in one pass

epochs: the number of training rounds

Datasets

The whole datasets are very large and thus moved to Google Drive.

About

CMPP project

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published