Skip to content

XMUDM/GENET

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GENET

GENET: Unleashing the Power of Side Information for Recommendation via Hypergraph Pretraining

Code structure

.
├── config
│   ├── finetune.json
│   ├── finetune_seq.json
│   └── pretrain.json
── data
│   ├── data.zip
├── finetune
│   ├── finetuning_fewshots.py
│   ├── finetuning_gnn_signal.py
│   ├── finetuning_item_coldstart.py
│   ├── finetuning_user_coldstart.py
│   └── no_tuning.py
├── finetune_seq
│   └── finetuning_seq_signal.py
├── models
│   ├── HGNNP.py
│   └── Signal.py
├── pretrain
│   └── pretrain_lp_pm_plus.py
├── readme.md
├── save
│   ├── model
│   │   └── amazon
│   │       └── HGNNP_plus_LP_PM_500.pth
│   └── structure
│       └── amazon
│           └── hg_plus.pkl
└── utils
    ├── amazon.py
    ├── batch_test.py
    ├── cold_start.py
    ├── foursquare.py
    ├── gowalla.py
    ├── metrics.py
    └── visualize.py

Requirements

pip install -r requirements.txt         # Install requirements with pip

Datasets

We have provided the preprocessed Books datasets in the data/ folder. Please unzip the amazon.zip file before running the code. We have also provided the pre-trained model in the save/model/ folder. Please unzip them.

Quick start

python finetune/finetuning_gnn_signal.py   # Run a experiment, before that, please setup the root path of the dataset in the code.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages