- Chrisanna K Cornish ccor@itu.dk
- Christian M Hansen chmh@itu.dk
The data can be downloaded from Kaggle
Approx 20000 still images from 26 individuals tagged with classes 0-9:
- c0: normal driving
- c1: texting - right
- c2: talking on the phone - right
- c3: texting - left
- c4: talking on the phone - left
- c5: operating the radio
- c6: drinking
- c7: reaching behind
- c8: hair and makeup
- c9: talking to passenger
Classes are approxiamtely balanced.
According to Kaggle 'State Farm set up these experiments in a controlled environment - a truck dragging the car around on the streets - so these "drivers" weren't really driving.'
Image classification using tranfer learning and salience consideration
- VGG16 link to trained model
- ResNet18
- ResNet50
-
- Fine tune a model for binary classification, distracted or not
-
- Fine tune a model for multiclass classification, according to provided classes.
- We then want to look at what areas the model is focussing on and create some heatmaps to demonstrate this:
statefarm_drivers_01.ipynb
statefarm_drivers_02.ipynb
statefarm_drivers_02_vgg.ipynb
driver_imgs_list.csv
model
├───resnet50_multi_unfreeze_tune_v02.pt
src
├───imgs
│ ├───test
│ └───train
│ ├───c0
│ ├───c1
│ ├───c2
│ ├───c3
│ ├───c4
│ ├───c5
│ ├───c6
│ ├───c7
│ ├───c8
│ └───c9
├───train
│ ├───c0
│ └───c1
├───train_m
│ ├───c0
│ ├───c1
│ ├───c2
│ ├───c3
│ ├───c4
│ ├───c5
│ ├───c6
│ ├───c7
│ ├───c8
│ └───c9
├───val
│ ├───c0
│ └───c1
└───val_m
├───c0
├───c1
├───c2
├───c3
├───c4
├───c5
├───c6
├───c7
├───c8
└───c9