[Test]
Goal: $$ Q_{k}=\sum_{l=-n}^{n} \hat{f}{l} \hat{f}{k-l} \hat{\beta}(l, k-l),\quad k = -n,\dots,n $$
Method | description |
---|---|
Classical way |
|
duplicate |
|
duplicate |
|
3d example
1d数组+行或列存储 | i->j(f[n-j]) |
j->i(f[i]) +2层 |
|
---|---|---|---|
n=$25^3$ | 0.33 | 0.32 | 0.24 |
n=$27^3$ | 0.53(4.82) | 0.51(4.81) | 0.38(4.56) |
n=$29^3$ | 0.81 | 0.77 | 0.58 |
n=$31^3$ | 1.29 | 1.15 | 0.86 |
n=$33^3$ | 1.77 | 1.75 | 1.24 |
n=$35^3$ | 2.50 | 2.43 | 1.72 |
100% | >96% | 70% |
[G. Dimarco and L. Pareschi 2014] Section 5.1
$$
\hat{Q}{k}=\sum{l=-N }^{N} \hat{f}{l} \hat{f}{k-l} \hat{\beta}(l, k-l), \quad k=-n, \ldots, n
$$
where the Boltzmann kernel modes
Special cases $$ \begin{aligned} F_0(\xi,0) &= \frac{-\xi \cos (\xi) + \sin (\xi)}{\xi^3}\ F_0(0,0) &= \frac{1}{3}\ F_0(\xi,\xi) &= \frac{\xi-\cos(\xi)\sin(\xi)}{2\xi^3}\ F_1(\xi,0) &= \frac{-2-(-2+\xi^2)\cos(\xi) + 2\xi \sin (\xi)}{\xi^4}\ F_1(0,0) &= \frac{1}{4}\ F_1(\xi,\xi) &= -\frac{-1-2\xi^2+\cos(2\xi) + 2\xi \sin (2\xi)}{8\xi^4} \end{aligned} $$
- initial guess
- fftw3 interface
- 1rk-4
- nofiltering: for smooth case, it enjoys higher accuracy
- change to array for faster evaluation
Remarks
$J_{max} = N/2 + c, c < N/2$
./testBKW3D 17 0.000855 0.5 490
- entropy tu
- 比较误差 dt 取非常小,
- 不加entropy fix
Setup
Forward Euler | Detail |
---|---|
0.08 | |
0.0007 | |