TBSIM is a simulation environment designed for data-driven closed-loop simulation of autonomous vehicles. It supports training and evaluation of popular traffic models such as behavior cloning, CVAE, and our new BITS model specifically designed for AV simulation. The users can flexibly specify the simulation environment and plug in their own model (learned or analytic) for evaluation.
Thanks to trajdata, TBSIM can access data and scenarios from a wide range of public datasets, including Lyft Level 5, nuScenes, and nuPlan.
TBSIM is well equiped with abundant util functions, and supports batched simulation in parallel, logging, and replay. We also provide a suite of simulation metrics that measures the safety, liveness, and diversity of the simulation.
Install tbsim
conda create -n tbsim python=3.8
conda activate tbsim
git clone git@github.com:NVlabs/traffic-behavior-simulation.git tbsim
cd tbsim
pip install -e .
Install trajdata
cd ..
git clone ssh://git@github.com:NVlabs/trajdata.git trajdata
cd trajdata
# replace requirements.txt with trajdata_requirements.txt included in tbsim
pip install -e .
Install Pplan
cd ..
git clone ssh://git@github.com:NVlabs/spline-planner.git Pplan
cd Pplan
pip install -e .
Usually the user needs to install torch separately that fits the hardware setup (OS, GPU, CUDA version, etc., check https://pytorch.org/get-started/locally/ for instructions)
We currently support the Lyft Level 5 dataset and the nuScenes dataset.
- Download the Lyft Prediction dataset (only the metadata and the map) and organize the dataset directory as follows:
lyft_prediction/ │ aerial_map/ │ semantic_map/ │ meta.json └───scenes │ │ sample.zarr │ │ train_full.zarr │ │ train.zarr | | validate.zarr
- Download the nuScenes dataset (with the v1.3 map extension pack) and organize the dataset directory as follows:
nuscenes/ │ maps/ │ └── expansion/ │ v1.0-mini/ │ v1.0-trainval/
Lyft dataset (set --debug
flag to suppress wandb logging):
python scripts/train.py --dataset_path <path-to-lyft-data-directory> --config_name l5_bc --debug
nuScenes dataset (set --debug
flag to suppress wandb logging):
python scripts/train.py --dataset_path <path-to-nuscenes-data-directory> --config_name nusc_bc --debug
See the list of registered algorithms in configs/registry.py
Lyft dataset:
First train a spatial planner:
python scripts/train.py --dataset_path <path-to-lyft-data-directory> --config_name l5_spatial_planner --debug
Then train a multiagent predictor:
python scripts/train.py --dataset_path <path-to-lyft-data-directory> --config_name l5_agent_predictor --debug
nuScenes dataset: First train a spatial planner:
python scripts/train.py --dataset_path <path-to-nuScenes-data-directory> --config_name nusc_spatial_planner --debug
Then train a multiagent predictor:
python scripts/train.py --dataset_path <path-to-nuScenes-data-directory> --config_name nusc_agent_predictor --debug
See the list of registered algorithms in configs/registry.py
python scripts/evaluate.py \
--results_root_dir results/ \
--num_scenes_per_batch 2 \
--dataset_path <your-dataset-path> \
--env <l5kit|nusc> \
--policy_ckpt_dir <path-to-checkpoint-dir> \
--policy_ckpt_key <ckpt-file-identifier> \
--eval_class BC \
--render
With the spatial planner and multiagent predictor trained, one can run BITS simulation with
python scripts/evaluate.py \
--results_root_dir results/ \
--dataset_path <your-dataset-path> \
--env <l5kit|nusc> \
--ckpt_yaml <path-to-yaml-dir> \
--eval_class HierAgentAware \
--render
The ckpt_yaml file specifies the checkpoints for the spatial planner and predictor, an example can be found at evaluation/BITS_example.yaml
with pretrained checkpoints.
Pretrained checkpoints can be downloaded at https://www.dropbox.com/sh/vdmy9eq9nlvx0nf/AADpCpvCF2ypLIuvVe1Cizd0a?dl=0.
You can check the launch.json file if using VS code.
TBSIM allows the ego to have a separate policy than the rest of the agents. An example command is
python scripts/evaluate.py \
--results_root_dir results/ \
--dataset_path <your-dataset-path> \
--env <l5kit|nusc> \
--ckpt_yaml <path-to-yaml-dir> \
--eval_class <your-policy-name> \
--agent_eval_class=HierAgentAware\
--render
Here your policy should be declared in tbsim/evaluation/policy_composer.py
.
If you use TBSIM in a scientific publication, we would appreciate using the following citations:
@inproceedings{xu2023bits,
title={Bits: Bi-level imitation for traffic simulation},
author={Xu, Danfei and Chen, Yuxiao and Ivanovic, Boris and Pavone, Marco},
booktitle={2023 IEEE International Conference on Robotics and Automation (ICRA)},
pages={2929--2936},
year={2023},
organization={IEEE}
}