Skip to content

YangLabHKUST/LOG-TRAM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LOG-TRAM

Leveraging the local genetic structure for trans-ancestry association mapping

Installation

$ git clone https://github.com/YangLabHKUST/LOG-TRAM.git
$ cd LOG-TRAM
$ conda env create -f environment.yml
$ conda activate tram

check the installation status

$ python ./src/LOG-TRAM.py -h
usage: LOG-TRAM.py [-h] --out OUT --sumstats-popu1 FILE,PHENOTYPE [FILE,PHENOTYPE ...] --sumstats-popu2 FILE,PHENOTYPE
                   [FILE,PHENOTYPE ...] --ldscores LDSCORES [--use_snps USE_SNPS] [--out-harmonized] [--out-reg-coef]
                   [--reg-int-ident] [--reg-int-diag] [--allowed-chr-values ALLOWED_CHR_VALUES [ALLOWED_CHR_VALUES ...]]
                   [--remove-palindromic-snps] [--num_threads NUM_THREADS]

Leverage local genetic architecture for trans-ancestry association mapping

optional arguments:
  -h, --help            show this help message and exit
  --out OUT             output file path
  --sumstats-popu1 FILE,PHENOTYPE [FILE,PHENOTYPE ...]
                        summary statisitcs F(file path),P(phenotype) of population 1, separated by whitespace
  --sumstats-popu2 FILE,PHENOTYPE [FILE,PHENOTYPE ...]
                        summary statisitcs F(file path),P(phenotype) of population 2, separated by whitespace
  --ldscores LDSCORES   specifies prefix of the LD score files computed by S-LDXR (popu1 <corresponding to population of --sumstats-
                        popu1>, popu2 <corresponding to population of --sumstats-popu2>, trans-ethnic), If the filename prefix
                        contains the symbol @, LOG-TRAM will replace the @ symbol with chromosome number, then add the suffix
                        _pop1.gz/_pop2.gz/_te.gz
  --use_snps USE_SNPS   SNPs list file (one rsID per line), If specified, this list will be used to restrict the final list of SNPs
                        reported
  --out-harmonized      If specified, LOG-TRAM will output harmonized summary statistics to disk
  --out-reg-coef        If specified, LOG-TRAM will output LD score regression coeficients to disk
  --reg-int-ident       Optional argument indicating that the LDscore regression intercept matrix should be set to be the identity
                        matrix.
  --reg-int-diag        Optional argument indicating that the LDscore regression intercept matrix should have off-diagonal elements
                        set to zero
  --allowed-chr-values ALLOWED_CHR_VALUES [ALLOWED_CHR_VALUES ...]
                        specify the allowed values for the chromosome
  --remove-palindromic-snps
                        This option removes the SNPs whose major and minor alleles form a base pair
  --num_threads NUM_THREADS
                        number of threads

Reproducibility

We provide source codes and datasets for reproducing the experiments of LOG-TRAM meta-analysis of 29 EAS and EUR traits, and 17 AFR and EUR/EAS traits in the demos directory.

Quick start

We illustrate the usage of LOG-TRAM by applying it to the GWAS summary statistics of BMI from BBJ male and UKBB with 1 Mbp non-overlapping sliding windows as local regions. The GWAS datasets and LDscores files involved in the following example are availabel from here

Data preparation

Input files of LOG-TRAM include:

  • GWAS summay statistics files of the target and auxiliary populations
  • LDscore files (from S-LDXR)

The LOG-TRAM format GWAS summary statistics file has at least 11 fields:

  • SNP: SNP rsid
  • CHR: chromosome
  • BP: base pair
  • A1: effect allele
  • A2: other allele
  • FRQ: effect allele frequency
  • BETA: marginal effect size
  • SE: standard error
  • N: sample size
  • Z: Z-scores
  • P: p-value

e.g.,

$ head BMI_harmonized_pop2_BBJ.txt
CHR     BP      SNP     A1      A2      FRQ     BETA    SE      Z       P       N
1       752566  rs3094315       G       A       0.8438  -0.0035920490000000004  0.006645739     -0.5405041      0.5889  85894
1       846808  rs4475691       C       T       0.1411  0.004290303     0.0069305669999999995   0.6190406999999999      0.5359  85894
1       854250  rs7537756       A       G       0.1766  0.0013868110000000002   0.0063270719999999996   0.2191868       0.8265  85894
1       861808  rs13302982      A       G       0.5404  0.0138975119697173      0.00484123214245955     2.8706559736788 0.004093        85894
1       863124  rs4040604       G       T       0.5421  0.01388188      0.0048426       2.866618        0.004145        85894
1       880238  rs3748592       A       G       0.9454  -0.01863968     0.01061939      -1.75525        0.07931 85894
1       882803  rs2340582       A       G       0.9462  -0.0187335737094156     0.0106935272024001      -1.75186104218362       0.07986 85894
1       884815  rs4246503       A       G       0.9422  -0.01772236     0.01033875      -1.7141680000000001     0.08656 85894
1       888659  rs3748597       T       C       0.9526  -0.01932025     0.01135427      -1.701585       0.0888  85894

LDscore files were computed by S-LDXR with easily accessible 1000 Genomes project genotypes as reference panels. For reproducibility, we provide the LDscore files of EUR, EAS, AFR, and trans-ancestries for 1 Mbp non-overlapping sliding windows here

Usage

Once the input files are formatted, LOG-TRAM will automatically preprocess the datasets, including SNPs overlapping and minor allele matching. It takes 8 mins to run the following meta-analysis for the whole genome (computing environment: 20 CPU cores of Intel(R) Xeon(R) Gold 6230N CPU @ 2.30GHz processor, 1TB of memory, and a 22 TB solid-state disk).

python <install path>/src/LOG-TRAM.py \
        --out BMI_meta \
        --sumstats-popu1 BMI_harmonized_pop1_UKB.txt,BMI_UKB \
        --sumstats-popu2 BMI_harmonized_pop2_BBJ.txt,BMI_BBJ \
        --ldscores ./LDscoresEUR-EAS/ldsc_annot_EUR_EAS_1mb_TGP_hm3_chr@_std

Results

LOG-TRAM will output two meta-analysis files, corresponding to EAS and EUR respectively. LOG-TRAM will add the inputed phenotype name after --out argument automatically. Usually, we focus on the under-represented populations such as EAS:

$ head BMI_meta_TRAM_pop2_BMI_BBJ.txt
CHR     BP      SNP     A1      A2      FRQ     BETA    SE      Z       P       N       N_eff
1       752566  rs3094315       G       A       0.8438  -0.0015213296260925097  0.0028724631954416806   -0.5296254547340108     5.963716420681353e-1    85894   142023.18563988016
1       846808  rs4475691       C       T       0.1411  0.0024243137461232656   0.0032506101165059613   0.7458026829526787      4.557866190070761e-1    85894   142023.18563988016
1       854250  rs7537756       A       G       0.1766  0.0018498950124382176   0.0030984860402657115   0.597031901515225       5.504860818628083e-1    85894   142023.18563988016
1       861808  rs13302982      A       G       0.5404  0.009935609855423763    0.0035296626853253818   2.8148893368001393      4.879403304370678e-3    85894   142023.18563988016
1       863124  rs4040604       G       T       0.5421  0.010249240519351707    0.0035059696552997184   2.923368290954452       3.4626668356417944e-3   85894   142023.18563988016
1       880238  rs3748592       A       G       0.9454  -0.016950700361663937   0.006774302735757054    -2.502205912970559      1.234221174580461e-2    85894   142023.18563988016
1       882803  rs2340582       A       G       0.9462  -0.01697948824519616    0.006711745870831338    -2.5298169167857703     1.1412205878599073e-2   85894   142023.18563988016
1       884815  rs4246503       A       G       0.9422  -0.016311334186057062   0.006506282892858627    -2.507012752851644      1.2175631870410657e-2   85894   142023.18563988016
1       888659  rs3748597       T       C       0.9526  -0.017798097900681556   0.007087384241213514    -2.5112364865424786     1.2030907045241506e-2   85894   142023.18563988016

N is the original GWAS sample size, N_eff is the computed effective sample size. N_eff should be larger than N as LOG-TRAM can brorrow information from the large-scale auxiliary dataset.

Contact information

Please contact Jiashun Xiao (jxiaoae@connect.ust.hk), Mingxuan Cai (mcaiad@ust.hk) or Prof. Can Yang (macyang@ust.hk) if any enquiry.

Reference

Jiashun Xiao, Mingxuan Cai, Xinyi Yu, Xianghong Hu, Xiang Wan, Gang Chen, Can Yang. (2022). Leveraging the local genetic structure for trans-ancestry association mapping. The American Journal of Human Genetics, Volume 109, Issue 7.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages