TMPP: A Transformer-Based Spatiotemporal Model for High-Accuracy PM2.5 Concentration Prediction
The dataset used in this program has been saved in Google Drive, which is given by Shuo Wang
Python 3.7.3
PyTorch 1.13.1
PyG: https://github.com/rusty1s/pytorch_geometric#pytorch-170
pip install -r requirements.txtFirst, open util.py,do the following setups
- Set the current machine's name or remove the comments if you are using Linux or MacOS
# Get file directory based on the current machine's nodename
# nodename = os.uname().nodename
nodename ="LAPTOP-UP2D1R34"
file_dir = config['filepath'][nodename]Second, open config.yaml, do the following setups
- Set data path after your server name. Like mine
filepath: # Define file paths for different machines
LAPTOP-UP2D1R34::
knowair_fp: C:\Users\Lenovo\Desktop\PM2.5-GNN-main\data\KnowAir.npy
results_dir: C:\Users\Lenovo\Desktop\PM2.5-GNN-main\results- Uncomment the model you want to run
model: MLP
# model: LSTM
# model: GRU
# model: GC_LSTM
# model: nodesFC_GRU
# model: PM25_GNN
# model: PM25_GNN_nosub
# model: TMPP
# model: Informer
# model: patchTST
# model: Non_AR
# model: Fixed_Memory- Choose the sub-datast number in [1,2,3]
dataset_num: 1- Set weather variables you wish to use. Following is the default setting in the paper. You can uncomment specific variables. Variables in dataset KnowAir is defined in
metero_var
metero_use: ['2m_temperature',
'boundary_layer_height',
'k_index',
'relative_humidity+950',
'surface_pressure',
'total_precipitation',
'u_component_of_wind+950',
'v_component_of_wind+950',]python train.py