a repository about conditional model, disentangled representation model, style-based model, and compressed model.
Disentangling Representations using Attributes-based Gaussian Estimation for Medical Sound Diagnosis
root
└─p3agedr.py # training and validation for the AGEDR model
└─mylibs
│ └─conv_vae # the VAE modules
└─audiokits
│ └─transforms.py # tools for data augmentation
run the project
python ./p3agedr.py
run the project with different experiments
agedr = AGEDRTrainer()
agedr.demo() # test the code
agedr.train() # train
# test the NN and SVM
agedr.evaluate_cls(seed=12) # test NN cls
agedr.evaluate_cls_ml(seed=12) # test SVM cls
agedr.evaluate_tsne()
agedr.train_cls(latent_dim=30, onlybeta=False, seed=89, vaepath="./runs/agedr/202409061417_一层Linear/")
agedr.train_cls(latent_dim=16, onlybeta=True, seed=89, vaepath="./runs/agedr/202409061417_一层Linear/")
# train from checkpoint
# agedr.train(load_ckpt_path="./runs/agedr/202409041841/")
# test from pretrained AGEDR model
# agedr.evaluate_retrain_cls(latent_dim=30, onlybeta=False,
# vaepath="./runs/agedr/202409051036_二层Linear_提取特征/epoch370/epoch_370_vae.pth",
# clspath="./runs/agedr/202409051036_二层Linear_提取特征/epoch370/retrain_cls/cls_vae370_ld30_retrain30.pth")
# agedr.evaluate_retrain_cls(latent_dim=16, onlybeta=True,
# vaepath="./runs/agedr/202409051036_二层Linear_提取特征/epoch370/epoch_370_vae.pth",
# clspath="./runs/agedr/202409051036_二层Linear_提取特征/epoch370/retrain_cls/cls_vae370_ld16_retrain80.pth")
# agedr.evaluate_retrain_cls(latent_dim=30, onlybeta=False,
# vaepath="./runs/agedr/202409042044_一层Linear_分类失败/epoch370/epoch_370_vae.pth",
# clspath="./runs/agedr/202409042044_一层Linear_分类失败_二层Linear_提取特征/epoch370/retrain_cls/cls_vae370_ld30_retrain30.pth")
# agedr.evaluate_retrain_cls(latent_dim=16, onlybeta=True,
# vaepath="./runs/agedr/202409051036_二层Linear_提取特征/epoch370/epoch_370_vae.pth",
# clspath="./runs/agedr/202409051036_二层Linear_提取特征/epoch370/retrain_cls/cls_vae370_ld16_retrain80.pth")