Table cell details:
r:2a;2->1!;1 = rule applied: condition, transformation, delay, (! denotes a firing event) c:0 = neuron charge after applying the rule i:1(0) = incoming spikes: charge(source neuron) c:2 = neuron charge after receiving the spikes
Neurons and corresponding rules:
rule0 = [TransformationRule(div=1, mod=0, source=1, target=1, delay=2)] pn0 = PNeuron(targets=[1], transf_rules=rule0) pn0.charge = 2 * k - 1 rule1 = [TransformationRule(div=k, mod=0, source=k, target=1, delay=1)] pn1 = PNeuron(targets=[2], transf_rules=rule1) pn1.charge = 0 rule2 = [TransformationRule(div=1, mod=0, source=1, target=1, delay=0)] pn2 = PNeuron(targets=[], transf_rules=rule2, output=True) pn2.charge = 1
Generated table is for k = 3.
+---------+----------------------+----------------------+----------------------+ | Step | Neuron 0 | Neuron 1 | Neuron 2 | +=========+======================+======================+======================+ | initial | 3 | 0 | 1 | | charge | | | | +---------+----------------------+----------------------+----------------------+ | 0 | r:1a;1->1!;2 | r:- | r:1a;1->1!;0 | | | c:2 | c:0 | c:0 | +---------+----------------------+----------------------+----------------------+ | 1 | r:- | r:- | r:- | | | c:2 | c:0 | c:0 | +---------+----------------------+----------------------+----------------------+ | 2 | r:- | r:- | r:- | | | c:2 | c:0 | c:0 | | | | i:1(0) | | | | | c:1 | | +---------+----------------------+----------------------+----------------------+ | 3 | r:1a;1->1!;2 | r:- | r:- | | | c:1 | c:1 | c:0 | +---------+----------------------+----------------------+----------------------+ | 4 | r:- | r:- | r:- | | | c:1 | c:1 | c:0 | +---------+----------------------+----------------------+----------------------+ | 5 | r:- | r:- | r:- | | | c:1 | c:1 | c:0 | | | | i:1(0) | | | | | c:2 | | +---------+----------------------+----------------------+----------------------+ | 6 | r:1a;1->1!;2 | r:2a;2->1!;1 | r:- | | | c:0 | c:0 | c:0 | +---------+----------------------+----------------------+----------------------+ | 7 | r:- | r:- | r:- | | | c:0 | c:0 | c:0 | | | | | i:1(1) | | | | | c:1 | +---------+----------------------+----------------------+----------------------+ | 8 | r:- | r:- | r:1a;1->1!;0 | | | c:0 | c:0 | c:0 | | | | i:1(0) | | | | | c:1 | | +---------+----------------------+----------------------+----------------------+
Neurons and corresponding rules:
rule0 = TransformationRule(div=1, mod=0, source=1, target=1, delay=i) for i in range(1, k) rule1 = TransformationRule(div=2, mod=0, source=1, target=1, delay=0)) pn0 = PNeuron(targets=[], transf_rules=[rule0, rule1], output=True) pn0.charge = 2
Generated table is for k = 10 with a system output of 6.
+---------+----------------------+ | Step | Neuron 0 | +=========+======================+ | initial | 2 | | charge | | +---------+----------------------+ | 0 | r:1a;1->1!;5 | | | c:1 | +---------+----------------------+ | 1 | r:- | | | c:1 | +---------+----------------------+ | 2 | r:- | | | c:1 | +---------+----------------------+ | 3 | r:- | | | c:1 | +---------+----------------------+ | 4 | r:- | | | c:1 | +---------+----------------------+ | 5 | r:- | | | c:1 | +---------+----------------------+ | 6 | r:1a;1->1!;3 | | | c:0 | +---------+----------------------+
-
Ionescu, Mihai, Gheorghe Păun, and Takashi Yokomori. Fundamenta informaticae 71.2, 3 (2006): 279-308.