Skip to content

aaronlee1999/Job-Recommender

 
 

Repository files navigation

dsa3101-2210-07-data-science

instructions to run Frontend webpage

  1. Build Images: #cd into Frontend docker build . -t data-consumer-service

#cd into Backend docker build . -t data-provider-service

  1. create nework:

docker network create shinyapp-python

  1. Run Images:

docker run --name=data-provider-service --net=shinyapp-python -p 5000:5000 -d data-provider-service docker run --name=data-consumer-service --net=shinyapp-python -p 6233:3838 -d data-consumer-service

  1. Open in web server:

http://127.0.0.1:6233

Instructions to Run Backend Model

1. Enter the Backend directory

2. Run the following command to build the image 'reco'

docker build . -t reco 

3. Run the following command to run the container 'reco_test' on port 5000

docker run --name reco_test -p5000:5000 -d reco

4. To test whether the container is running correctly. The code below (in Python) should return a JSON containing information of Data Science articles from Medium

import requests
x = requests.get('http://127.0.0.1:5000/get_articles')
x.json()

5. Code examples and sample inputs for other functions in the API are provided as comments in flask_template.py

About

Job Recommender System (DSA3101)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 82.1%
  • R 14.8%
  • Python 2.8%
  • Dockerfile 0.3%