forked from tensorflow/addons
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add Soft Weighted Kappa Loss (tensorflow#762)
* add weighted kappa loss * add unit tests * change some docs * change python files format * shorten some lines * rename and update README and BUILD * resolve conversations * resolve converstions * remove escape * reformat tensorflow_addons/losses/kappa_loss* with black * reformat code * reformat code * reformat code with black * Update tensorflow_addons/losses/kappa_loss.py Co-Authored-By: Gabriel de Marmiesse <gabrieldemarmiesse@gmail.com> * [KappaLoss] change according to review * Update tensorflow_addons/losses/kappa_loss.py Co-Authored-By: Gabriel de Marmiesse <gabrieldemarmiesse@gmail.com> * Update tensorflow_addons/losses/kappa_loss.py Co-Authored-By: Gabriel de Marmiesse <gabrieldemarmiesse@gmail.com> * [KappaLoss] change accroding to code review * [KappaLoss] change code format * [SoftKappaLoss] mv kappa_loss_test.py to losses/tests * Update .github/CODEOWNERS Co-Authored-By: Gabriel de Marmiesse <gabrieldemarmiesse@gmail.com> * [SoftKappaLoss] refine codes according to code review * [SoftKappaLoss] reformat codes * [SoftKappaLoss] fix np_deep not defined * [SoftKappaLoss] fix tests problem * [SoftKappaLoss] unnecessary change to tigger CI * Default value for the seed is not needed. Co-authored-by: gabrieldemarmiesse <gabrieldemarmiesse@gmail.com>
- Loading branch information
1 parent
1fdb5b1
commit 6810fb3
Showing
4 changed files
with
227 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,132 @@ | ||
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
"""Implements Weighted kappa loss.""" | ||
|
||
import tensorflow as tf | ||
from tensorflow_addons.utils.types import Number | ||
from typeguard import typechecked | ||
from typing import Optional | ||
|
||
|
||
@tf.keras.utils.register_keras_serializable(package="Addons") | ||
class WeightedKappaLoss(tf.keras.losses.Loss): | ||
"""Implements the Weighted Kappa loss function. | ||
Weighted Kappa loss was introduced in the | ||
[Weighted kappa loss function for multi-class classification | ||
of ordinal data in deep learning] | ||
(https://www.sciencedirect.com/science/article/abs/pii/S0167865517301666). | ||
Weighted Kappa is widely used in Ordinal Classification Problems. | ||
The loss value lies in [-inf, log 2], where log 2 | ||
means the random prediction. | ||
Usage: | ||
```python | ||
kappa_loss = WeightedKappaLoss(num_classes=4) | ||
y_true = tf.constant([[0, 0, 1, 0], [0, 1, 0, 0], | ||
[1, 0, 0, 0], [0, 0, 0, 1]]) | ||
y_pred = tf.constant([[0.1, 0.2, 0.6, 0.1], [0.1, 0.5, 0.3, 0.1], | ||
[0.8, 0.05, 0.05, 0.1], [0.01, 0.09, 0.1, 0.8]]) | ||
loss = kappa_loss(y_true, y_pred) | ||
print('Loss: ', loss.numpy()) # Loss: -1.1611923 | ||
``` | ||
Usage with `tf.keras` API: | ||
```python | ||
# outputs should be softmax results | ||
# if you want to weight the samples, just multiply the outputs | ||
# by the sample weight. | ||
model = tf.keras.Model(inputs, outputs) | ||
model.compile('sgd', loss=tfa.losses.WeightedKappa(num_classes=4)) | ||
``` | ||
""" | ||
|
||
@typechecked | ||
def __init__( | ||
self, | ||
num_classes: int, | ||
weightage: Optional[str] = "quadratic", | ||
name: Optional[str] = "cohen_kappa_loss", | ||
epsilon: Optional[Number] = 1e-6, | ||
dtype: Optional[tf.DType] = tf.float32, | ||
reduction: str = tf.keras.losses.Reduction.NONE, | ||
): | ||
"""Creates a `WeightedKappa` instance. | ||
Args: | ||
num_classes: Number of unique classes in your dataset. | ||
weightage: (Optional) Weighting to be considered for calculating | ||
kappa statistics. A valid value is one of | ||
['linear', 'quadratic']. Defaults to `quadratic` since it's | ||
mostly used. | ||
name: (Optional) String name of the metric instance. | ||
epsilon: (Optional) increment to avoid log zero, | ||
so the loss will be log(1 - k + epsilon), where k belongs to | ||
[-1, 1], usually you can use the default value which is 1e-6. | ||
dtype: (Optional) Data type of the metric result. | ||
Defaults to `tf.float32`. | ||
Raises: | ||
ValueError: If the value passed for `weightage` is invalid | ||
i.e. not any one of ['linear', 'quadratic'] | ||
""" | ||
|
||
super().__init__(name=name, reduction=reduction) | ||
|
||
if weightage not in ("linear", "quadratic"): | ||
raise ValueError("Unknown kappa weighting type.") | ||
|
||
self.weightage = weightage | ||
self.num_classes = num_classes | ||
self.epsilon = epsilon | ||
self.dtype = dtype | ||
label_vec = tf.range(num_classes, dtype=dtype) | ||
self.row_label_vec = tf.reshape(label_vec, [1, num_classes]) | ||
self.col_label_vec = tf.reshape(label_vec, [num_classes, 1]) | ||
col_mat = tf.tile(self.col_label_vec, [1, num_classes]) | ||
row_mat = tf.tile(self.row_label_vec, [num_classes, 1]) | ||
if weightage == "linear": | ||
self.weight_mat = tf.abs(col_mat - row_mat) | ||
else: | ||
self.weight_mat = (col_mat - row_mat) ** 2 | ||
|
||
def call(self, y_true, y_pred): | ||
y_true = tf.cast(y_true, dtype=self.dtype) | ||
batch_size = tf.shape(y_true)[0] | ||
cat_labels = tf.matmul(y_true, self.col_label_vec) | ||
cat_label_mat = tf.tile(cat_labels, [1, self.num_classes]) | ||
row_label_mat = tf.tile(self.row_label_vec, [batch_size, 1]) | ||
if self.weightage == "linear": | ||
weight = tf.abs(cat_label_mat - row_label_mat) | ||
else: | ||
weight = (cat_label_mat - row_label_mat) ** 2 | ||
numerator = tf.reduce_sum(weight * y_pred) | ||
label_dist = tf.reduce_sum(y_true, axis=0, keepdims=True) | ||
pred_dist = tf.reduce_sum(y_pred, axis=0, keepdims=True) | ||
w_pred_dist = tf.matmul(self.weight_mat, pred_dist, transpose_b=True) | ||
denominator = tf.reduce_sum(tf.matmul(label_dist, w_pred_dist)) | ||
denominator /= tf.cast(batch_size, dtype=self.dtype) | ||
loss = tf.math.divide_no_nan(numerator, denominator) | ||
return tf.math.log(loss + self.epsilon) | ||
|
||
def get_config(self): | ||
config = { | ||
"num_classes": self.num_classes, | ||
"weightage": self.weightage, | ||
"epsilon": self.epsilon, | ||
"dtype": self.dtype, | ||
} | ||
base_config = super().get_config() | ||
return {**base_config, **config} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
"""Tests for Weighted Kappa Loss.""" | ||
|
||
import pytest | ||
import numpy as np | ||
import tensorflow as tf | ||
from tensorflow_addons.losses.kappa_loss import WeightedKappaLoss | ||
|
||
|
||
def weighted_kappa_loss_np(y_true, y_pred, weightage="quadratic", eps=1e-6): | ||
num_samples, num_classes = y_true.shape | ||
cat_labels = y_true.argmax(axis=1).reshape((-1, 1)) | ||
label_mat = np.tile(cat_labels, (1, num_classes)) | ||
row_label_vec = np.arange(num_classes).reshape((1, num_classes)) | ||
label_mat_ = np.tile(row_label_vec, (num_samples, 1)) | ||
if weightage == "linear": | ||
weight = np.abs(label_mat - label_mat_) | ||
else: | ||
weight = (label_mat - label_mat_) ** 2 | ||
numerator = (y_pred * weight).sum() | ||
label_dist = y_true.sum(axis=0, keepdims=True) | ||
pred_dist = y_pred.sum(axis=0, keepdims=True) | ||
|
||
col_label_vec = row_label_vec.T | ||
row_mat = np.tile(row_label_vec, (num_classes, 1)) | ||
col_mat = np.tile(col_label_vec, (1, num_classes)) | ||
if weightage == "quadratic": | ||
weight_ = (col_mat - row_mat) ** 2 | ||
else: | ||
weight_ = np.abs(col_mat - row_mat) | ||
weighted_pred_dist = np.matmul(weight_, pred_dist.T) | ||
denominator = np.matmul(label_dist, weighted_pred_dist).sum() | ||
denominator /= num_samples | ||
return np.log(np.nan_to_num(numerator / denominator) + eps) | ||
|
||
|
||
def gen_labels_and_preds(num_samples, num_classes, seed): | ||
np.random.seed(seed) | ||
rands = np.random.uniform(size=(num_samples, num_classes)) | ||
cat_labels = rands.argmax(axis=1) | ||
y_true = np.eye(num_classes, dtype="int")[cat_labels] | ||
y_pred = np.random.uniform(size=(num_samples, num_classes)) | ||
y_pred /= y_pred.sum(axis=1, keepdims=True) | ||
return y_true, y_pred | ||
|
||
|
||
@pytest.mark.parametrize("np_seed", [0, 1, 2, 3]) | ||
def test_linear_weighted_kappa_loss(np_seed): | ||
y_true, y_pred = gen_labels_and_preds(50, 4, np_seed) | ||
kappa_loss = WeightedKappaLoss(num_classes=4, weightage="linear") | ||
y_pred = y_pred.astype(kappa_loss.dtype.as_numpy_dtype) | ||
loss = kappa_loss(y_true, y_pred) | ||
loss_np = weighted_kappa_loss_np(y_true, y_pred, weightage="linear") | ||
np.testing.assert_allclose(loss, loss_np, rtol=1e-5, atol=1e-5) | ||
|
||
|
||
@pytest.mark.parametrize("np_seed", [0, 1, 2, 3]) | ||
def test_quadratic_weighted_kappa_loss(np_seed): | ||
y_true, y_pred = gen_labels_and_preds(100, 3, np_seed) | ||
kappa_loss = WeightedKappaLoss(num_classes=3) | ||
y_pred = y_pred.astype(kappa_loss.dtype.as_numpy_dtype) | ||
loss = kappa_loss(y_true, y_pred) | ||
loss_np = weighted_kappa_loss_np(y_true, y_pred) | ||
np.testing.assert_allclose(loss, loss_np, rtol=1e-5, atol=1e-5) | ||
|
||
|
||
def test_config(): | ||
kappa_loss = WeightedKappaLoss( | ||
num_classes=4, weightage="linear", name="kappa_loss", epsilon=0.001, | ||
) | ||
assert kappa_loss.num_classes == 4 | ||
assert kappa_loss.weightage == "linear" | ||
assert kappa_loss.name == "kappa_loss" | ||
np.testing.assert_allclose(kappa_loss.epsilon, 0.001, 1e-6) | ||
|
||
|
||
def test_serialization(): | ||
loss = WeightedKappaLoss(num_classes=3) | ||
tf.keras.losses.deserialize(tf.keras.losses.serialize(loss)) |