Applied two supervised algorithms, Linear regression and K-Nearest Neighbors to predict the composition values at various eta values.
These are dimensionless number, that represent normalized energy parameters which corresponds to:
- eta1 - first neighbor cluster
- eta2 - second neighbor cluster
- eta3 - third neighbor cluster
- eta4 - fourth neighbor cluster
The dataset contains: u0, u1, u2, u3, u4, eta1, eta2, eta3, eta4. Here
- u0 - Composition
- u1 - Correlation function for I-neighbor pair
- u2 - Correlation function for II-neighbor pair
- u3 - Correlation function for triangle
- u4 - Correlation function for tetrahedron cluster
- Accuracy of linear model on training dataset : 49.709004178502795 %
- Accuracy of linear model on testing dataset : 51.05961513782863 %
- Accuracy of K-Nearest Neighbor model on training dataset : 59.11328125000001 %
- Accuracy of K-Nearest Neighbor model on testing dataset : 51.05961513782863 %
Using the efficient model, preferbly the KNN model can be used to predict the composition values at different eta values.