Skip to content

Commit

Permalink
Use same settings as Samare
Browse files Browse the repository at this point in the history
  • Loading branch information
gmatteo committed Dec 19, 2024
1 parent b46b593 commit 7f1f607
Show file tree
Hide file tree
Showing 2 changed files with 280 additions and 2 deletions.
21 changes: 19 additions & 2 deletions abipy/examples/flows/run_qha_vzsisa.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,9 +22,11 @@ def build_flow(options):
__file__ = os.path.join(os.getcwd(), "run_qha_vzsisa.py")
options.workdir = os.path.basename(__file__).replace(".py", "").replace("run_", "flow_")

from abipy.flowtk.psrepos import get_oncvpsp_pseudos
pseudos = get_oncvpsp_pseudos(xc_name="PBE", version="0.4")

# Initialize structure and pseudos
structure = abilab.Structure.from_file(abidata.cif_file("si.cif"))
pseudos = abidata.pseudos("14si.pspnc")

# Select k-mesh for electrons and q-mesh for phonons.
#ngkpt = [2, 2, 2]; ngqpt = [2, 2, 2]
Expand All @@ -41,7 +43,22 @@ def build_flow(options):
ph_scales = [1, 1.02, 1.04] # EinfVib2(D)

scf_input = abilab.AbinitInput(structure, pseudos)
scf_input.set_vars(ecut=8, nband=4, tolvrs=1e-8, nstep=50)
#scf_input.set_vars(ecut=8, nband=4, tolvrs=1e-8, nstep=50)

# Set other important variables (consistent with tutorial)
# Aall the other DFPT runs will inherit these parameters.
scf_input.set_vars(
nband=4,
nline=10,
nbdbuf=0,
nstep=100,
ecut=8.0,
ecutsm=1.0,
#chksymbreak=1,
occopt=1,
tolvrs=1.0e-18, # SCF stopping criterion (modify default)
)

scf_input.set_kmesh(ngkpt=ngkpt, shiftk=[0, 0, 0])

return VzsisaFlow.from_scf_input(options.workdir, scf_input, bo_scales, ph_scales, ngqpt,
Expand Down
261 changes: 261 additions & 0 deletions abipy/flowtk/zsisa.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,261 @@
# coding: utf-8
"""
Workflows for calculations within the quasi-harmonic approximation.
"""
from __future__ import annotations

import numpy as np

from abipy.tools.serialization import mjson_write
from abipy.dfpt.deformation_utils import generate_deformations
from abipy.flowtk.works import Work, PhononWork
from abipy.flowtk.tasks import RelaxTask
from abipy.flowtk.flows import Flow


class ZsisaFlow(Flow):
"""
Flow for QHA calculations with the VZSISA approach.
.. rubric:: Inheritance Diagram
.. inheritance-diagram:: ZsisaFlow
"""

@classmethod
def from_scf_input(cls, workdir, scf_input, eps, ngqpt, with_becs, with_quad,
edos_ngkpt=None, manager=None) -> ZsisaFlow:
"""
Build a flow for QHA calculations from an |AbinitInput| for GS-SCF calculation.
Args:
workdir: Working directory of the flow.
eps:
scf_input: |AbinitInput| for GS-SCF run used as template to generate the other inputs.
strains_a: List of scaling factors for the a and b lattice vectors.
strains_c: List of scaling factors for the c lattice vectors.
ngqpt: Three integers defining the q-mesh for phonon calculation.
with_becs: Activate calculation of Electric field and Born effective charges.
with_quad: Activate calculation of dynamical quadrupoles. Require `with_becs`
Note that only selected features are compatible with dynamical quadrupoles.
Please consult <https://docs.abinit.org/topics/longwave/>
edos_ngkpt: Three integers defining the the k-sampling for the computation of the
electron DOS with the relaxed structures. Useful for metals or small gap semiconductors
in which the electronic contribution should be included.
None disables the computation of the e-DOS.
manager: |TaskManager| instance. Use default if None.
"""
flow = cls(workdir=workdir, manager=manager)

# optcell = 2: full optimization of cell geometry (
work = ZsisaWork.from_scf_input(scf_input, eps, ngqpt, with_becs, with_quad,
ionmov=2, edos_ngkpt=edos_ngkpt)

flow.register_work(work)
return flow

def finalize(self):
"""
This method is called when the flow is completed.
It performs some basic post-processing of the results to facilitate further analysis.
"""
#work = self[0]
#data = {}

## Build list of strings with path to the relevant output files ordered by V.
#data["gsr_relax_paths"] = [task.gsr_path for task in work.relax_tasks_vol]

#entries, gsr_relax_volumes = [], []
#for task in work.relax_tasks_vol:
# with task.open_gsr() as gsr:
# entries.append(dict(
# volume=gsr.structure.volume,
# energy_eV=float(gsr.energy),
# pressure_GPa=float(gsr.pressure),
# #structure=gsr.structure,
# ))
# gsr_relax_volumes.append(gsr.structure.volume)

#data["gsr_entries"] = entries
#data["gsr_relax_volumes"] = gsr_relax_volumes

#data["ddb_paths"] = [ph_work.outdir.has_abiext("DDB") for ph_work in work.ph_works]
#data["ddb_relax_volumes"] = [ph_work[0].input.structure.volume for ph_work in work.ph_works]

#data["gsr_edos_path"] = [] if not work.edos_work else [task.gsr_path for task in work.edos_work]

#mjson_write(data, self.outdir.path_in("zsisa.json"), indent=4)

return super().finalize()


class ZsisaWork(Work):
"""
This work performs a structural relaxation of the initial structure, then a set of distorted
structures is genenerated and the relaxed structures are used
to compute phonons, BECS and the dielectric tensor with DFPT.
.. rubric:: Inheritance Diagram
.. inheritance-diagram:: ZsisaWork
"""

@classmethod
def from_scf_input(cls, scf_input, eps, ngqpt,
with_becs: bool, with_quad: bool,
ionmov: int, edos_ngkpt=None) -> ZsisaWork:
"""
Build the work from an |AbinitInput| representing a GS-SCF calculation.
Args:
scf_input: |AbinitInput| for GS-SCF used as template to generate the other inputs.
with_becs: Activate calculation of Electric field and Born effective charges.
ionmov: Abinit input variables.
edos_ngkpt: Three integers defining the the k-sampling for the computation of the
electron DOS with the relaxed structures. Useful for metals
in which the electronic contribution should be included.
None disables the computation of the e-DOS.
"""
work = cls()

# Save attributes in work
work.initial_scf_input = scf_input
work.eps = float(eps)
work.ngqpt = ngqpt
work.with_becs = with_becs
work.with_quad = with_quad
work.edos_ngkpt = edos_ngkpt if edos_ngkpt is None else np.reshape(edos_ngkpt, (3,))

# Create input for relaxation and register the relaxation task.
work.relax_template = relax_template = scf_input.deepcopy()
relax_template.pop_tolerances()
# optcell = 2: full optimization of cell geometry (
relax_template.set_vars(optcell=2, ionmov=ionmov, tolvrs=1e-8, toldff=1.e-6)
#if optcell is not None and optcell != 0:
relax_template.set_vars_ifnotin(ecutsm=0.5, dilatmx=1.05)

work.initial_relax_task = work.register_relax_task(relax_template)

return work

def on_ok(self, sender):
"""
This method is called when one task reaches status `S_OK`.
It executes on_all_ok when all tasks in self have reached `S_OK`.
"""
if sender == self.initial_relax_task:
# Get relaxed structure and build new task for structural relaxation at fixed volume.
relaxed_structure = sender.get_final_structure()
v0 = relaxed_structure.volume
self.deformed_structures_dict = generate_deformations(relaxed_structure, eps=self.eps)

relax_template = self.relax_template
self.relax_tasks_vol = []
for structure in self.deformed_structures_dict.values():
# Relax at fixed unit cell.
new_input = relax_template.new_with_structure(structure, optcell=0)
task = self.register_relax_task(new_input)
self.relax_tasks_vol.append(task)

self.flow.allocate(build=True)

return super().on_ok(sender)

def on_all_ok(self):
"""
This callback is called when all tasks in the Work reach status `S_OK`.
Here we add a new PhononWork for each volume using the relaxed structure.
"""
self.edos_work = None if self.edos_ngkpt is None else Work()

# Build phonon works for the different relaxed structures.
self.ph_works = []

start = 1
for task, def_name in zip(self[start:], self.deformed_structures_dict.keys(), strict=True):
relaxed_structure = task.get_final_structure()
scf_input = self.initial_scf_input.new_with_structure(relaxed_structure)
ph_work = PhononWork.from_scf_input(scf_input, self.ngqpt, is_ngqpt=True, tolerance=None,
with_becs=self.with_becs, ddk_tolerance=None)

ph_work.set_name(def_name)
self.ph_works.append(ph_work)
self.flow.register_work(ph_work)

# Add electron DOS calculation.
if self.edos_ngkpt is not None:
edos_input = scf_input.make_edos_input(self.edos_ngkpt)
self.edos_work.register_nscf_task(edos_input, deps={ph_work[0]: "DEN"})

if self.edos_ngkpt is not None: self.flow.register_work(self.edos_work)
self.flow.allocate(build=True)

# Build phonon works for the different relaxed structures.
#for task, bo_scale in zip(self.relax_tasks_vol, self.strains_a):
# if all(abs(bo_scale - self.strains_c)) > 1e-3: continue
# relaxed_structure = task.get_final_structure()
# scf_input = self.initial_scf_input.new_with_structure(relaxed_structure)

# ph_work = PhononWork.from_scf_input(scf_input, self.ngqpt, is_ngqpt=True, tolerance=None,
# with_becs=self.with_becs, with_quad=self.with_quad,
# ddk_tolerance=None)

# # Reduce the number of files produced in the DFPT tasks to avoid possible disk quota issues.
# prtvars = dict(prtwf=-1, prtden=0, prtpot=0)
# for task in ph_work[1:]:
# task.input.set_vars(**prtvars)

# self.flow.register_work(ph_work)
# self.ph_works.append(ph_work)

# # Add electron DOS calculation.
# if self.edos_work is not None:
# edos_input = scf_input.make_edos_input(self.edos_ngkpt)
# self.edos_work.register_nscf_task(edos_input, deps={ph_work[0]: "DEN"})

#if self.edos_ngkpt is not None: self.flow.register_work(self.edos_work)
self.flow.allocate(build=True)

return super().on_all_ok()


#class ThermalRelaxTask(RelaxTask):
#
# def _on_ok(self):
# results = super()._on_ok()
# # Check for convergence.
# #if not self.collinear_done:
# # self.input.set_vars(strtarget=strtarget)
# # self.finalized = False
# # self.restart()
#
# return results
#
#
#class ThermalRelaxWork(Work):
# """
# .. rubric:: Inheritance Diagram
# .. inheritance-diagram:: ThermalRelaxWork
# """
#
# @classmethod
# def from_relax_input(cls, relax_input, qha, temperatures, pressures):
# """
# """
# work = cls()
#
# work.temperatures = temperatures
# work.pressures = pressures
# #work.qha = qha
#
# for pressure in pressures:
# for temperature in temperatures:
# strtarget = qha.get_strtarget(temperature, pressure)
# new_input = relax_input.new_with_vars(strtarget=strtarget)
# work.register_relax_task(new_input)
#
# return work
#
# def on_all_ok(self):
# """
# Implement the post-processing step at the end of the Work.
# """
# return super().on_all_ok()

0 comments on commit 7f1f607

Please sign in to comment.