We propose OANet using the attention mechanism and SOR loss to predict database performance so that the relationship between Knob and the workload can also be considered
external : external matrics (TIME, RATE, WAF, SA) mode : kind of neural network ('reshape' is a proposed model, 'single'is a single layer neural network) hidden_size : hidden size of the model group_size : group size of the model dot : Whether to use dot-loss or not lamb : Weighted value of dot loss lr : learning rate act_function : activation function epochs : Number of epochs to run during train step train : model goes train mode eval : model goes eval mode
python main.py --train --mode {reshape or single } --external {external matrix} --dot --lamb {lamb} --hidden_size {hidden size} --group_size {group size} --epochs {epochs} --lr {learning rate}
We used RocksDB in our experiments. The dataset consists of data for multiple workloads environment. And each row of the dataset for each workload consists of Knob configuration values and performance(external metrics. e,g,Time,Rate, WAF, SA) values.
Below is link of OANet paper
Paper link