Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
adwaitgondhalekar authored May 24, 2022
0 parents commit ed3b360
Show file tree
Hide file tree
Showing 15 changed files with 2,253 additions and 0 deletions.
438 changes: 438 additions & 0 deletions ML Assignment 1.ipynb

Large diffs are not rendered by default.

504 changes: 504 additions & 0 deletions ML Assignment 2.ipynb

Large diffs are not rendered by default.

353 changes: 353 additions & 0 deletions ML Assignment 3.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,353 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 55,
"id": "7f9de4c2",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 56,
"id": "4d0833a3",
"metadata": {},
"outputs": [],
"source": [
"data = pd.read_csv(\"knn_data.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 57,
"id": "06f78e9e",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>X</th>\n",
" <th>Y</th>\n",
" <th>Colour</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" <td>Orange</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>4</td>\n",
" <td>4</td>\n",
" <td>Blue</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>4</td>\n",
" <td>6</td>\n",
" <td>Orange</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4</td>\n",
" <td>2</td>\n",
" <td>Orange</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>6</td>\n",
" <td>2</td>\n",
" <td>Blue</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>6</td>\n",
" <td>4</td>\n",
" <td>Orange</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" X Y Colour\n",
"0 2 4 Orange\n",
"1 4 4 Blue\n",
"2 4 6 Orange\n",
"3 4 2 Orange\n",
"4 6 2 Blue\n",
"5 6 4 Orange"
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data"
]
},
{
"cell_type": "code",
"execution_count": 58,
"id": "9c2db9cb",
"metadata": {},
"outputs": [],
"source": [
"X = data.iloc[:,:-1].values\n",
"Y = data.iloc[:,-1].values"
]
},
{
"cell_type": "code",
"execution_count": 60,
"id": "c982e784",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['Orange', 'Blue', 'Orange', 'Orange', 'Blue', 'Orange'],\n",
" dtype=object)"
]
},
"execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Y\n"
]
},
{
"cell_type": "code",
"execution_count": 61,
"id": "96a3eea7",
"metadata": {},
"outputs": [],
"source": [
"c = ['b' if x==\"Blue\" else 'orange' for x in Y]"
]
},
{
"cell_type": "code",
"execution_count": 62,
"id": "28801e31",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['orange', 'b', 'orange', 'orange', 'b', 'orange']"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"c"
]
},
{
"cell_type": "code",
"execution_count": 63,
"id": "368e6588",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.collections.PathCollection at 0x1b7681aa3a0>"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAU3ElEQVR4nO3db4xd9X3n8fcH2wRinBjwLBhMcbKh7YZI/MnUQFkhQtIkYBpalQdolbJYu/LC0m6i7SpqKm2kbKv2QaU2IUh4XdJsLIKyKAksokDDtrAEJQbGjoEQs1uLkOBC6oEGjI0N2P7ug3uRhut7PWfsO3OHw/slXc255/zmno9+unzmcO65PqkqJElvf0eNOoAkaTgsdElqCQtdklrCQpeklrDQJaklFo5qx8uWLauVK1eOaveS9La0adOmF6pqrN+2kRX6ypUrmZiYGNXuJeltKclPB23zlIsktYSFLkktYaFLUktY6JLUEha6NNXeF2DHg7B74OdO0rzVqNCTLE3yrSRPJdma5IKe7UlyQ5JtSR5Pcu7sxJVmSRVs+izccRr8n0/BXb8K918Kb+wadTKpsaZH6F8G7q2qXwXOArb2bL8UOKP7WAvcNLSE0lz4h5tg21/Bgb3wxsuwfy/80/3wyH8YdTKpsWkLPcl7gIuArwJU1etV9VLPsCuADdWxEViaZPmww0qz5qm/hP2vvnXdgdfg2W/Dvj2jySTNUJMj9PcDk8DXkvwwyc1JFveMORV4dsrz7d11b5FkbZKJJBOTk5OHHVoautd/MWBDwb7dcxpFOlxNCn0hcC5wU1WdA+wG/rBnTPr83kF3zqiq9VU1XlXjY2N9v7kqjcZJH6Hvfw7HLId3nTjncaTD0aTQtwPbq+rh7vNv0Sn43jGnTXm+AnjuyONJc+TsP4NF74Gjju48z1Gw4N2w6r9D+h2vSPPPtIVeVT8Hnk3yK91VHwV+3DPsTuDq7tUu5wMvV9Xzw40qzaIlH4DVT8AZ/xFO+DU4/d/Ax78Pp3xi1Mmkxpr+41y/D3wjydHA08CaJNcCVNU64G7gMmAb8CqwZhaySrPr3Svgw3856hTSYWtU6FW1BRjvWb1uyvYCrh9eLEnSTPlNUUlqCQtdklrCQpeklrDQJaklLHRJagkLXZJawkKXpJaw0CWpJSx0SWoJC12SWsJCl6SWsNAlqSUsdElqCQtdklrCQpeklrDQJaklGt3gIskzwCvAfmBfVY33bL8Y+F/AT7qrvlNV/21oKSVJ02p6CzqAj1TVC4fY/r2quvxIA0mSDo+nXCSpJZoWegHfTbIpydoBYy5I8liSe5Kc2W9AkrVJJpJMTE5OHlZgSVJ/TU+5XFhVzyX5F8B9SZ6qqgenbN8MnF5Vu5JcBtwBnNH7IlW1HlgPMD4+XkcWXZI0VaMj9Kp6rvtzB3A7sKpn+86q2tVdvhtYlGTZkLNKkg5h2kJPsjjJkjeXgY8DP+oZc3KSdJdXdV/3xeHHlSQN0uSUy0nA7d2+XgjcWlX3JrkWoKrWAVcC1yXZB+wBrqoqT6lI0hyattCr6mngrD7r101ZvhG4cbjRJEkz4WWLktQSFroktYSFLkktYaFLUktY6JLUEha6JLWEhS5JLWGhS1JLWOiS1BIWuiS1hIUuSS1hoUtSS1joktQSFroktYSFLkktYaFLUks0KvQkzyR5IsmWJBN9tifJDUm2JXk8ybnDjypJOpQmt6B700eq6oUB2y4Fzug+zgNu6v6UJM2RYZ1yuQLYUB0bgaVJlg/ptSVJDTQt9AK+m2RTkrV9tp8KPDvl+fbuurdIsjbJRJKJycnJmaeVJA3UtNAvrKpz6ZxauT7JRT3b0+d36qAVVeuraryqxsfGxmYYVZJ0KI0Kvaqe6/7cAdwOrOoZsh04bcrzFcBzwwgoSWpm2kJPsjjJkjeXgY8DP+oZdidwdfdql/OBl6vq+aGnlSQN1OQql5OA25O8Of7Wqro3ybUAVbUOuBu4DNgGvAqsmZ24kqRBpi30qnoaOKvP+nVTlgu4frjRJEkz4TdFJaklLHRJagkLXZJawkKXpJaw0CWpJSx0SWoJC12SWsJCl6SWsNAlqSUsdElqCQtdklrCQpeklrDQJaklLHRJagkLXZJaonGhJ1mQ5IdJ7uqz7eIkLyfZ0n18YbgxJUnTaXLHojd9BtgKvGfA9u9V1eVHHkmSdDgaHaEnWQGsBm6e3TiSpMPV9JTLl4DPAQcOMeaCJI8luSfJmf0GJFmbZCLJxOTk5AyjSpIOZdpCT3I5sKOqNh1i2Gbg9Ko6C/gKcEe/QVW1vqrGq2p8bGzscPJKkgZocoR+IfCpJM8A3wQuSXLL1AFVtbOqdnWX7wYWJVk27LCSpMGmLfSq+nxVraiqlcBVwN9X1aenjklycpJ0l1d1X/fFWcgrSRpgJle5vEWSawGqah1wJXBdkn3AHuCqqqrhRJQkNZFR9e74+HhNTEyMZN+S9HaVZFNVjffb5jdFJaklLHRJagkLXZJawkKXpJaw0CWpJSx0SWoJC12SWsJCl6SWsNAlqSUsdElqCQtdklrCQpeklrDQJaklLHRJagkLXZJa4rBvcDESB/bDP/0d7Hoajj8bTjwPOjdKko5YFTz6KGzeDCtXwm/8BixYMOpUapWd/wA77oejT4BTVsPCY4f68o0LPckCYAL4x6q6vGdbgC8DlwGvAtdU1eZhBmXPz+G+fw17d0DtgxwFx38YPnLv0CdF7zx798Lq1fDww3DgACxcCMuWwUMPwSmnjDqd3vaqYOI/wdM3A0dBFnQeH/3fcMKHh7abmZxy+QywdcC2S4Ezuo+1wE1HmOtgG9fA7p/Cvldg/x7YtxtefAR+9MdD35Xeef70T+H734fdu2HPHnjlFfjZz+Dqq0edTK3wj3fCT74G+/fC/lc7PfbGS/DA5VAHhrabRoWeZAWwGrh5wJArgA3VsRFYmmT5kDLCvlfh53/XOTKf6sBeePprQ9uN3rn++q87R+lT7d8PDz7YKXfpiGxb3zkI7fXmgemQND1C/xLwOWDQn5JTgWenPN/eXfcWSdYmmUgyMTk52Txl7R+87cDrzV9HGuD1Q7yN9u0bvE1qZP/e/usT2P/a0HYzbaEnuRzYUVWbDjWsz7qD7j5dVeuraryqxsfGxpqnXLQEjj/r4N1kEaz47eavIw3wO78DixYdvP6DH4Tjj5/7PGqZlZ+GBYsPXl/AsvOHtpsmR+gXAp9K8gzwTeCSJLf0jNkOnDbl+QrguaEkfNP5/wMWvRcWdD8AXbgYjj0Fzv6zoe5G70x/8iewYgUcd1zn+bHHwnvfCxs2jDaXWuJ9n4Zlq2Bh9w121NGdLvv1DbDgXUPbTaoOOpAePDi5GPgvfa5yWQ38Hp2rXM4DbqiqVYd6rfHx8ZqYmJhZ2tf+GX6yAXb+XzhxFZx+lVe4aGj27IHbboONG+GXf7nzgeiJJ446lVrjwH54/h547h541xi8/xo4buWMXybJpqoa77vtcAs9ybUAVbWue9nijcAn6Vy2uKaqDtnWh1XokvQOd6hCn9EXi6rqAeCB7vK6KesLuP7wI0qSjpRf/ZeklrDQJaklLHRJagkLXZJawkKXpJaw0CWpJSx0SWoJC12SWsJCl6SWsNAlqSUsdElqCQtdklrCQpeklrDQJaklLHRJagkLXZJaoslNoo9J8kiSx5I8meSLfcZcnOTlJFu6jy/MTlxJ0iBN7lj0GnBJVe1Ksgh4KMk9VbWxZ9z3eu81KkmaO9MWevf2cru6Txd1H81vRCpJmhONzqEnWZBkC7ADuK+qHu4z7ILuaZl7kpw54HXWJplIMjE5OXn4qSVJB2lU6FW1v6rOBlYAq5J8qGfIZuD0qjoL+Apwx4DXWV9V41U1PjY2dvipJUkHmdFVLlX1EvAA8Mme9Turald3+W5gUZJlQ8ooSWqgyVUuY0mWdpePBT4GPNUz5uQk6S6v6r7ui0NPK0kaqMlVLsuBrydZQKeob6uqu5JcC1BV64ArgeuS7AP2AFd1P0yVJM2RJle5PA6c02f9uinLNwI3DjeaJGkm/KaoJLWEhS5JLWGhS1JLWOiS1BIWuiS1hIUuSS1hoUtSS1joktQSFroktYSFLkktYaFLUktY6JLUEha6JLWEhS5JLWGhS1JLNLlj0TFJHuneAPrJJF/sMyZJbkiyLcnjSc6dnbiSpEGa3LHoNeCSqtqVZBHwUJJ7qmrjlDGXAmd0H+cBN3V/SpLmyLRH6NWxq/t0UffRe3u5K4AN3bEbgaVJlg83qiTpUBqdQ0+yIMkWYAdwX1U93DPkVODZKc+3d9f1vs7aJBNJJiYnJw8zsiSpn0aFXlX7q+psYAWwKsmHeoak36/1eZ31VTVeVeNjY2MzDitJGmxGV7lU1UvAA8AnezZtB06b8nwF8NyRBJMkzUyTq1zGkiztLh8LfAx4qmfYncDV3atdzgderqrnhx1WkjRYk6tclgNfT7KAzh+A26rqriTXAlTVOuBu4DJgG/AqsGaW8kqSBpi20KvqceCcPuvXTVku4PrhRpMkzYTfFJWklrDQJaklLHRJagkLXZJawkKXpJaw0CWpJSx0SWoJC12SWsJCl6SWsNAlqSUsdElqCQtdklrCQpeklrDQJaklLHRJagkLXZJaoskt6E5Lcn+SrUmeTPKZPmMuTvJyki3dxxdmJ64kaZAmt6DbB/xBVW1OsgTYlOS+qvpxz7jvVdXlw48oSWpi2iP0qnq+qjZ3l18BtgKnznYwSdLMzOgcepKVdO4v+nCfzRckeSzJPUnOHPD7a5NMJJmYnJyceVpJ0kCNCz3JccC3gc9W1c6ezZuB06vqLOArwB39XqOq1lfVeFWNj42NHWZkSVI/jQo9ySI6Zf6NqvpO7/aq2llVu7rLdwOLkiwbalJJ0iE1ucolwFeBrVX1FwPGnNwdR5JV3dd9cZhBJUmH1uQqlwuB3wWeSLKlu+6PgF8CqKp1wJXAdUn2AXuAq6qqhh9XkjTItIVeVQ8BmWbMjcCNwwolSZo5vykqSS1hoUtSS1joktQSFroktYSFLkktYaFLUktY6JLUEha6JLWEhS5JLWGhS1JLWOiS1BIWuiS1hIUuSS1hoUtSS1joktQSTW5wIb0z7NsDP/uf8MIP4Lgz4P3XwDHeSVHDsX8//M3fwL33wtgYXHMNvO99w93HtIWe5DRgA3AycABYX1Vf7hkT4MvAZcCrwDVVtXm4UaVZtPcF+NtV8NoO2LcbFhwLT/4xfOxBOP6sUafT29wbb8AnPgGPPgq7dsHRR8Of/znceiv81m8Nbz9NTrnsA/6gqv4VcD5wfZIP9oy5FDij+1gL3DS8iNIcePy/wp7tnTIH2L8H3tgJP/i3o82lVrjlFnjkkU6ZA7z+OuzZA1dfDa+9Nrz9TFvoVfX8m0fbVfUKsBU4tWfYFcCG6tgILE2yfHgxpVn27LfhwBsHr9/5Y3j9F3OfR61yyy2we/fB6xP4wQ+Gt58ZfSiaZCVwDvBwz6ZTgWenPN/OwaVPkrVJJpJMTE5OzjCqNIuOOnrwtvhRk47Mscf2X18FxxwzvP00LvQkxwHfBj5bVTt7N/f5lTpoRdX6qhqvqvGxsbGZJZVm07/8d53z5lNlAYxdBIuWjCaTWmPtWli8+OD1ixfDqlXD20+jQk+yiE6Zf6OqvtNnyHbgtCnPVwDPHXk8aY6c+XlY9uuwYHGn2BcugcWnwwUbRp1MLfCbvwlr1nSOxt/9bliyBJYuhbvugqOGePF4qg46kH7rgM4VLF8H/rmqPjtgzGrg9+hc5XIecENVHfLvzvj4eE1MTBxOZmn2vPgo/OKHsHglnPRROGrBqBOpRbZtg/vvhxNOgNWrD+90S5JNVTXeb1uTk4MXAr8LPJFkS3fdHwG/BFBV64C76ZT5NjqXLa6ZeUxpHjjx1zoPaRZ84AOdx2yZttCr6iH6nyOfOqaA64cVSpI0c371X5JawkKXpJaw0CWpJSx0SWqJaS9bnLUdJ5PATw/z15cBLwwxzrDM11wwf7OZa2bMNTNtzHV6VfX9ZubICv1IJJkYdB3mKM3XXDB/s5lrZsw1M++0XJ5ykaSWsNAlqSXeroW+ftQBBpivuWD+ZjPXzJhrZt5Rud6W59AlSQd7ux6hS5J6WOiS1BLzttCTnJbk/iRbkzyZ5DN9xiTJDUm2JXk8ybnzJNfFSV5OsqX7+MIc5DomySNJHuvm+mKfMaOYrya55ny+pux7QZIfJrmrz7Y5n6+GuUY5X88keaK734P+/etRzVmDXCOZsyRLk3wryVPdzrigZ/tw56uq5uUDWA6c211eAvw/4IM9Yy4D7qHzr0GeDzw8T3JdDNw1x/MV4Lju8iI6twk8fx7MV5Nccz5fU/b9n4Fb++1/FPPVMNco5+sZYNkhto9kzhrkGsmc0bmXxL/vLh8NLJ3N+Zq3R+g1T29O3TDXnOvOQfee4izqPno/8R7FfDXJNRJJVgCrgZsHDBnJzc8b5JrPvGF8V5L3ABcBXwWoqter6qWeYUOdr3lb6FPlCG9OPVsOkQvggu5phnuSnDlHeRakcxOSHcB9VTUv5qtBLhjBfAFfAj4HHBiwfVTvry9x6FwwmvmCzh/j7ybZlGRtn+2jmrPpcsHcz9n7gUnga93TZzcn6b2z6FDna94XeoZwc+rZME2uzXT+vYWzgK8Ad8xFpqraX1Vn07mn66okH+oZMpL5apBrzucryeXAjqradKhhfdbN6nw1zDWS91fXhVV1LnApcH2Si3q2j+q/yelyjWLOFgLnAjdV1TnAbuAPe8YMdb7mdaFnnt6cerpcVbXzzdMMVXU3sCjJstnONWX/LwEPAJ/s2TTSm3kPyjWi+boQ+FSSZ4BvApckuaVnzCjma9pco3x/VdVz3Z87gNuB3nsHj+Q9Nl2uEc3ZdmD7lP8j/Radgu8dM7T5mreFniR0zj1traq/GDDsTuDq7ifF5wMvV9Xzo86V5OTuOJKsojPPL85yrrEkS7vLxwIfA57qGTaK+Zo21yjmq6o+X1UrqmolcBXw91X16Z5hcz5fTXKNYr66+1qcZMmby8DHgR/1DBvFe2zaXCN6j/0ceDbJr3RXfRT4cc+woc5Xk5tEj8p8vTl1k1xXAtcl2QfsAa6q7kfas2g58PUkC+i8WW+rqruSXDsl1yjmq0muUcxXX/NgvprkGtV8nQTc3u3FhcCtVXXvPJizJrlGNWe/D3wjydHA08Ca2Zwvv/ovSS0xb0+5SJJmxkKXpJaw0CWpJSx0SWoJC12SWsJCl6SWsNAlqSX+PwXo4NabAZgaAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.scatter(X[:,:-1],X[:,-1],color=c)"
]
},
{
"cell_type": "code",
"execution_count": 71,
"id": "692bbef9",
"metadata": {},
"outputs": [],
"source": [
"from sklearn.neighbors import KNeighborsClassifier,NearestNeighbors\n",
"knn = KNeighborsClassifier(n_neighbors=3)"
]
},
{
"cell_type": "code",
"execution_count": 65,
"id": "3d3fd02e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"KNeighborsClassifier(n_neighbors=3)"
]
},
"execution_count": 65,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"knn.fit(X,Y)"
]
},
{
"cell_type": "code",
"execution_count": 66,
"id": "f36fcfbe",
"metadata": {},
"outputs": [],
"source": [
"prediction = knn.predict([[6,6]])"
]
},
{
"cell_type": "code",
"execution_count": 73,
"id": "c6fdc38b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['Orange']\n"
]
}
],
"source": [
"print(prediction)\n"
]
},
{
"cell_type": "code",
"execution_count": 74,
"id": "ee5897e9",
"metadata": {},
"outputs": [],
"source": [
"knn_2 = KNeighborsClassifier(weights='distance')"
]
},
{
"cell_type": "code",
"execution_count": 75,
"id": "1f8b161a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"KNeighborsClassifier(weights='distance')"
]
},
"execution_count": 75,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"knn_2.fit(X,Y)"
]
},
{
"cell_type": "code",
"execution_count": 76,
"id": "83b3f16b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['Orange']\n"
]
}
],
"source": [
"prediction2 = knn_2.predict([[6,6]])\n",
"print(prediction2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c2d5f10f",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python [conda env:root] *",
"language": "python",
"name": "conda-root-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Loading

0 comments on commit ed3b360

Please sign in to comment.