-
Notifications
You must be signed in to change notification settings - Fork 138
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #121 from victoris93/master
Parallelize NBS
- Loading branch information
Showing
2 changed files
with
195 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,191 @@ | ||
from __future__ import division, print_function | ||
import numpy as np | ||
import multiprocessing | ||
|
||
from .utils import BCTParamError, get_rng | ||
from .algorithms import get_components | ||
from .due import due, BibTeX | ||
from .citations import ZALESKY2010 | ||
|
||
@due.dcite(BibTeX(ZALESKY2010), description="Network-based statistic") | ||
|
||
def ttest2_stat_only(x, y, tail): | ||
t = np.mean(x) - np.mean(y) | ||
n1, n2 = len(x), len(y) | ||
s = np.sqrt(((n1 - 1) * np.var(x, ddof=1) + (n2 - 1) | ||
* np.var(y, ddof=1)) / (n1 + n2 - 2)) | ||
denom = s * np.sqrt(1 / n1 + 1 / n2) | ||
if denom == 0: | ||
return 0 | ||
if tail == 'both': | ||
return np.abs(t / denom) | ||
if tail == 'left': | ||
return -t / denom | ||
else: | ||
return t / denom | ||
|
||
def ttest_paired_stat_only(A, B, tail): | ||
n = len(A - B) | ||
df = n - 1 | ||
sample_ss = np.sum((A - B)**2) - np.sum(A - B)**2 / n | ||
unbiased_std = np.sqrt(sample_ss / (n - 1)) | ||
z = np.mean(A - B) / unbiased_std | ||
t = z * np.sqrt(n) | ||
if tail == 'both': | ||
return np.abs(t) | ||
if tail == 'left': | ||
return -t | ||
else: | ||
return t | ||
|
||
def _permutation(args): | ||
seed, u, xmat, ymat, thresh, tail, paired, m, n, ixes, nx, ny, verbose, null, max_sz, hit, k = args | ||
|
||
if seed is None: | ||
seed = u | ||
rng = get_rng(seed) | ||
if paired: | ||
indperm = np.sign(0.5 - rng.rand(1, nx)) | ||
d = np.hstack((xmat, ymat)) * np.hstack((indperm, indperm)) | ||
else: | ||
d = np.hstack((xmat, ymat))[:, rng.permutation(nx + ny)] | ||
|
||
t_stat_perm = np.zeros((m,)) | ||
for i in range(m): | ||
if paired: | ||
t_stat_perm[i] = ttest_paired_stat_only( | ||
d[i, :nx], d[i, -nx:], tail) | ||
else: | ||
t_stat_perm[i] = ttest2_stat_only(d[i, :nx], d[i, -ny:], tail) | ||
|
||
ind_t, = np.where(t_stat_perm > thresh) | ||
|
||
adj_perm = np.zeros((n, n)) | ||
adj_perm[(ixes[0][ind_t], ixes[1][ind_t])] = 1 | ||
adj_perm = adj_perm + adj_perm.T | ||
|
||
a, sz = get_components(adj_perm) | ||
|
||
ind_sz, = np.where(sz > 1) | ||
ind_sz += 1 | ||
nr_components_perm = np.size(ind_sz) | ||
sz_links_perm = np.zeros((nr_components_perm)) | ||
for i in range(nr_components_perm): | ||
nodes, = np.where(ind_sz[i] == a) | ||
sz_links_perm[i] = np.sum(adj_perm[np.ix_(nodes, nodes)]) / 2 | ||
|
||
if np.size(sz_links_perm): | ||
null[u] = np.max(sz_links_perm) | ||
else: | ||
null[u] = 0 | ||
|
||
# compare to the true dataset | ||
if null[u] >= max_sz: | ||
hit += 1 | ||
|
||
if verbose: | ||
print(('permutation %i of %i. Permutation max is %s. Observed max is %s.') % | ||
(u + 1, k, null[u], max_sz)) | ||
elif (u % (k / 10) == 0 or u == k - 1): | ||
print('permutation %i of %i.' % (u + 1, k)) | ||
return null | ||
|
||
def nbs_bct(x, y, thresh, k=1000, tail='both', paired=False, verbose=False, seed=None, workers=-1): | ||
|
||
if tail not in ('both', 'left', 'right'): | ||
raise BCTParamError('Tail must be both, left, right') | ||
|
||
ix, jx, nx = x.shape | ||
iy, jy, ny = y.shape | ||
|
||
if not ix == jx == iy == jy: | ||
raise BCTParamError('Population matrices are of inconsistent size') | ||
else: | ||
n = ix | ||
|
||
if paired and nx != ny: | ||
raise BCTParamError('Population matrices must be an equal size') | ||
|
||
# only consider upper triangular edges | ||
ixes = np.where(np.triu(np.ones((n, n)), 1)) | ||
|
||
# number of edges | ||
m = np.size(ixes, axis=1) | ||
|
||
# vectorize connectivity matrices for speed | ||
xmat, ymat = np.zeros((m, nx)), np.zeros((m, ny)) | ||
|
||
for i in range(nx): | ||
xmat[:, i] = x[:, :, i][ixes].squeeze() | ||
for i in range(ny): | ||
ymat[:, i] = y[:, :, i][ixes].squeeze() | ||
del x, y | ||
|
||
# perform t-test at each edge | ||
t_stat = np.zeros((m,)) | ||
for i in range(m): | ||
if paired: | ||
t_stat[i] = ttest_paired_stat_only(xmat[i, :], ymat[i, :], tail) | ||
else: | ||
t_stat[i] = ttest2_stat_only(xmat[i, :], ymat[i, :], tail) | ||
|
||
# threshold | ||
ind_t, = np.where(t_stat > thresh) | ||
|
||
if len(ind_t) == 0: | ||
raise BCTParamError("Unsuitable threshold") | ||
|
||
# suprathreshold adjacency matrix | ||
adj = np.zeros((n, n)) | ||
adj[(ixes[0][ind_t], ixes[1][ind_t])] = 1 | ||
# adj[ixes][ind_t]=1 | ||
adj = adj + adj.T | ||
|
||
a, sz = get_components(adj) | ||
|
||
# convert size from nodes to number of edges | ||
# only consider components comprising more than one node (e.g. a/l 1 edge) | ||
ind_sz, = np.where(sz > 1) | ||
ind_sz += 1 | ||
nr_components = np.size(ind_sz) | ||
sz_links = np.zeros((nr_components,)) | ||
for i in range(nr_components): | ||
nodes, = np.where(ind_sz[i] == a) | ||
sz_links[i] = np.sum(adj[np.ix_(nodes, nodes)]) / 2 | ||
adj[np.ix_(nodes, nodes)] *= (i + 2) | ||
|
||
# subtract 1 to delete any edges not comprising a component | ||
adj[np.where(adj)] -= 1 | ||
|
||
if np.size(sz_links): | ||
max_sz = np.max(sz_links) | ||
else: | ||
# max_sz=0 | ||
raise BCTParamError('True matrix is degenerate') | ||
print('max component size is %i' % max_sz) | ||
|
||
print('Estimating null distribution with %i permutations. P-values will be returned at the end of the test.' % k) | ||
|
||
null = np.zeros((k,)) | ||
hit = 0 | ||
if workers == -1: | ||
workers = multiprocessing.cpu_count() | ||
|
||
pool = multiprocessing.Pool(workers) | ||
perm_args = [(seed, u, xmat, ymat, thresh, tail, paired, m, n, ixes, nx, ny, verbose, null, max_sz, hit, k) for u in range(k)] | ||
|
||
# Parallelize permutation | ||
null_dist = pool.map(_permutation, perm_args) | ||
|
||
pool.close() | ||
pool.join() | ||
|
||
null_dist = np.array(null_dist) | ||
null_dist = np.array([max(i) for i in null_dist.T]) | ||
|
||
pvals = np.zeros((nr_components,)) | ||
# calculate p-vals | ||
for i in range(nr_components): | ||
pvals[i] = np.size(np.where(null >= sz_links[i])) / k | ||
|
||
return pvals, adj, null_dist |