Skip to content

Commit

Permalink
fixes #69
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist committed May 30, 2024
1 parent 2911b1f commit c8e1a4a
Show file tree
Hide file tree
Showing 7 changed files with 62 additions and 522 deletions.
1 change: 0 additions & 1 deletion _CoqProject
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,6 @@ lib/hamming.v
lib/poly_ext.v
lib/euclid.v
lib/dft.v
lib/vandermonde.v
lib/classical_sets_ext.v
probability/fdist.v
probability/proba.v
Expand Down
2 changes: 1 addition & 1 deletion ecc_classic/bch.v
Original file line number Diff line number Diff line change
Expand Up @@ -561,7 +561,7 @@ Definition BCH_err y : {poly 'F_2} :=
let s := vstop.[0]^-1 *: vstop in
\poly_(i < n) (if s.[a^- i] == 0 then 1 else 0).

Definition BCH_repair : repairT [finType of 'F_2] [finType of 'F_2] n :=
Definition BCH_repair : repairT 'F_2 'F_2 n :=
[ffun y => if \BCHsynp_(rVexp a n, y, t) == 0 then
Some y
else
Expand Down
7 changes: 3 additions & 4 deletions ecc_classic/grs.v
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,7 @@
(* Copyright (C) 2020 infotheo authors, license: LGPL-2.1-or-later *)
From mathcomp Require Import all_ssreflect ssralg finalg poly polydiv cyclic.
From mathcomp Require Import perm matrix mxpoly vector mxalgebra zmodp.
Require Import ssr_ext ssralg_ext vandermonde linearcode.
Require Import dft poly_decoding.
Require Import ssr_ext ssralg_ext linearcode dft poly_decoding.

(******************************************************************************)
(* Generalized Reed-Solomon Codes *)
Expand Down Expand Up @@ -120,7 +119,7 @@ Definition GRS_PCM_sq (a b : 'rV[F]_n) r :=

Lemma GRS_PCM_sq_vander (a b : 'rV[F]_n) (rn : r <= n) :
GRS_PCM_sq a b r =
vandermonde.Vandermonde r (\row_(i < r) a``_(inord i)) *m
Vandermonde r (\row_(i < r) a``_(inord i)) *m
diag_mx (\row_(i < r) b``_(inord i)).
Proof.
apply/matrixP => i j.
Expand Down Expand Up @@ -150,7 +149,7 @@ apply mxrank_unit.
rewrite unitmxE unitfE GRS_PCM_sq_vander // det_mulmx mulf_neq0 //; last first.
by rewrite det_diag prodf_seq_neq0; apply/allP => /= i _; rewrite mxE b0.
case: r rn => [|r' rn]; first by rewrite det_mx00 oner_neq0.
rewrite vandermonde.det_Vandermonde prodf_seq_neq0; apply/allP => /= i _.
rewrite det_Vandermonde prodf_seq_neq0; apply/allP => /= i _.
rewrite prodf_seq_neq0; apply/allP => /= j _; apply/implyP.
rewrite ltnNge => ij; rewrite !mxE subr_eq0; apply: contra ij => /eqP ij.
move: (@a_inj (inord i) (inord j)); rewrite !ffunE ij => /(_ erefl).
Expand Down
6 changes: 3 additions & 3 deletions ecc_classic/reed_solomon.v
Original file line number Diff line number Diff line change
Expand Up @@ -702,7 +702,7 @@ Variables (d : nat) (n' : nat).
Let n := n'.+1.
Hypothesis dn : RS.redundancy_ub d n.

Definition encoder : encT F [finType of 'rV[F]_(n - d.+1).+1] n :=
Definition encoder : encT F 'rV[F]_(n - d.+1).+1 n :=
let g := \gen_(a, d) in
[ffun m => let mxd := rVpoly m * 'X^d in poly_rV (mxd - mxd %% g)].

Expand All @@ -720,7 +720,7 @@ Definition RS_discard' (x : 'rV[F]_n) : 'rV[F]_(n - d.+1).+1 :=
Definition RS_discard (x : 'rV[F]_n) : 'rV[F]_(n - d.+1).+1 :=
poly_rV ((rVpoly x) %/ 'X^d).

Definition decoder : decT F [finType of 'rV[F]_(n - d.+1).+1] n :=
Definition decoder : decT F 'rV[F]_(n - d.+1).+1 n :=
[ffun y => omap RS_discard (RS_repair a _ d y)].

Definition RS_code := mkCode encoder decoder.
Expand Down Expand Up @@ -778,7 +778,7 @@ Hypothesis a_not_uroot_on : not_uroot_on a n.

(* NB: corresponds to lemma 10.59? *)
Lemma RS_enc_img :
(enc RS_code) @: [finType of 'rV[F]_(n - d.+1).+1] \subset RS.code a n d.
(enc RS_code) @: 'rV[F]_(n - d.+1).+1 \subset RS.code a n d.
Proof.
apply/subsetP => /= c /imsetP[/= m _] ->{c}.
rewrite /encoder ffunE.
Expand Down
39 changes: 19 additions & 20 deletions ecc_modern/ldpc_algo.v
Original file line number Diff line number Diff line change
Expand Up @@ -203,7 +203,7 @@ Extract Constant Rmult => "( *.)".
Extract Constant Rplus => "(+.)".
Extract Constant Rinv => "fun x -> 1. /. x".
Extract Constant Ropp => "(~-.)".
Extraction "extraction/sumprod.ml" sumprod estimation.
(*Extraction "extraction/sumprod.ml" sumprod estimation.*)
Section ToGraph.
Expand All @@ -220,32 +220,32 @@ Fixpoint labels {id} {k U D} (n : tn_tree id k U D) : seq id :=
End ToGraph.
Definition sumbool_ord m n : finType := ('I_m + 'I_n)%type.
Section BuildTree.
Variables m n' : nat.
Let n := n'.+1.
Variable H : 'M['F_2]_(m, n).
Definition id := [finType of ('I_m + 'I_n)].
Import GRing.Theory.
Local Open Scope ring_scope.
Variable rW : 'I_n -> R2.
Definition kind_of_id (i : id) :=
Definition kind_of_id (i : sumbool_ord m n) :=
match i with
| inl _ => kf
| inr _ => kv
end.
Definition ord_of_kind k : finType :=
match k with
| kv => [finType of 'I_n]
| kf => [finType of 'I_m]
| kv => 'I_n
| kf => 'I_m
end.
Definition id_of_kind k : ord_of_kind k -> id :=
Definition id_of_kind k : ord_of_kind k -> sumbool_ord m n :=
match k with
| kv => inr
| kf => inl
Expand All @@ -257,13 +257,13 @@ Definition tag_of_kind k : ord_of_kind k -> tag k :=
| kf => fun i => Func
end.
Definition tag_of_id (a : id) : tag (kind_of_id a) :=
Definition tag_of_id (a : sumbool_ord m n) : tag (kind_of_id a) :=
match a with
| inl _ => Func
| inr i => Var (rW i)
end.
Definition select_children (s : seq id) k :=
Definition select_children (s : seq (sumbool_ord m n)) k :=
match k return ord_of_kind k -> seq (ord_of_kind (negk k)) with
| kv => fun i =>
let s := id_of_kind i :: s in
Expand All @@ -273,8 +273,8 @@ Definition select_children (s : seq id) k :=
[seq j <- ord_enum n | (H i j == 1) && (inr j \notin s)]
end.
Fixpoint build_tree_rec (h : nat) (s : seq id) k (i : ord_of_kind k)
: tn_tree id k unit unit :=
Fixpoint build_tree_rec (h : nat) (s : seq (sumbool_ord m n))
k (i : ord_of_kind k) : tn_tree (sumbool_ord m n) k unit unit :=
let chrn :=
match h with 0 => [::]
| h'.+1 =>
Expand All @@ -284,9 +284,10 @@ Fixpoint build_tree_rec (h : nat) (s : seq id) k (i : ord_of_kind k)
in
Node (id_of_kind i) (tag_of_kind i) chrn tt tt.
Definition build_tree := build_tree_rec #|id| [::].
Definition build_tree := build_tree_rec #|sumbool_ord m n| [::].
Fixpoint msg (i1 i2 : id) (i : option id) {k} (t : tn_tree id k R2 R2) :=
Fixpoint msg (i1 i2 : sumbool_ord m n) (i : option (sumbool_ord m n)) {k}
(t : tn_tree (sumbool_ord m n) k R2 R2) :=
if Some i1 == i then
if i2 == node_id t then [:: down t] else [::]
else if Some i2 == i then
Expand All @@ -306,8 +307,6 @@ Variables m n' : nat.
Let n := n'.+1.
Variable H : 'M['F_2]_(m, n).
Let id' := id m n'.
Import GRing.Theory.
Local Open Scope ring_scope.
Expand All @@ -328,22 +327,22 @@ Let p01 f n0 : R2 := (f (d `[n0 := 0]), f (d `[n0 := 1])).
Let alpha' := ldpc.alpha H W y.
Let beta' := ldpc.beta H W y.
Definition msg_spec (i j : id') : R2 :=
Definition msg_spec (i j : sumbool_ord m n) : R2 :=
match i, j with
| inl m0, inr n0 => p01 (alpha' m0 n0) n0
| inr n0, inl m0 => p01 (beta' n0 m0) n0
| _, _ => (R0,R0)
end.
Definition prec_node (s : seq id') :=
Definition prec_node (s : seq (sumbool_ord m n)) :=
match s with
| [::] => None
| [:: a & r] => Some a
end.
Coercion choice.seq_of_opt : option >-> seq.
Fixpoint build_computed_tree h s k i : tn_tree id' k R2 R2 :=
Fixpoint build_computed_tree h s k i : tn_tree (sumbool_ord m n) k R2 R2 :=
let chrn :=
match h with
| 0 => [::]
Expand All @@ -366,7 +365,7 @@ Fixpoint build_computed_tree h s k i : tn_tree id' k R2 R2 :=
end.
Definition computed_tree_spec :=
computed_tree = build_computed_tree #|id'| [::] (k:=kv) ord0.
computed_tree = build_computed_tree #|sumbool_ord m n| [::] (k:=kv) ord0.
Definition sumprod_spec := forall a b,
tanner_rel H a b ->
Expand All @@ -380,7 +379,7 @@ Definition estimation_spec := uniq (unzip1 estimations) /\
forall n0, (inr n0, (esti_spec n0 0, esti_spec n0 1)) \in estimations.
Definition get_esti (n0 : 'I_n) :=
pmap (fun (p : id' * R2) =>
pmap (fun (p : sumbool_ord m n * R2) =>
let (i, e) := p in if i == inr n0 then Some e else None).
Definition get_esti_spec := forall n0 : 'I_n,
Expand Down
Loading

0 comments on commit c8e1a4a

Please sign in to comment.