LLM Benchmark for Throughput via Ollama (Local LLMs)
Working Ollama installation.
Depending on your python setup either
pip install llm-benchmark
or
pipx install llm-benchmark
llm_benchmark run
It's tested on Python 3.9 and above.
7B model can be run on machines with 8GB of RAM
13B model can be run on machines with 16GB of RAM
On Windows, Linux, and macOS, it will detect memory RAM size to first download required LLM models.
When memory RAM size is greater than or equal to 4GB, but less than 7GB, it will check if gemma:2b exist. The program implicitly pull the model.
ollama pull qwen:1.8b
ollama pull gemma:2b
ollama pull phi:2.7b
ollama pull phi3:3.8b
When memory RAM size is greater than 7GB, but less than 15GB, it will check if these models exist. The program implicitly pull these models
ollama pull phi3:3.8b
ollama pull qwen2:7b
ollama pull gemma2:9b
ollama pull mistral:7b
ollama pull llama3.1:8b
ollama pull llava:7b
When memory RAM siz is greater than 15GB, it will check if these models exist. The program implicitly pull these models
ollama pull phi4:14b
ollama pull qwen2:7b
ollama pull gemma2:9b
ollama pull mistral:7b
ollama pull llama3.1:8b
ollama pull llava:7b
ollama pull llava:13b
https://python-poetry.org/docs/#installing-manually
python3 -m venv .venv
. ./.venv/bin/activate
pip install -U pip setuptools
pip install poetry
poetry shell
poetry install
llm_benchmark hello jason
llm_benchmark run
llm_benchmark run --no-sendinfo
Example #3 Benchmark run on explicitly given the path to the ollama executable (When you built your own developer version of ollama)
llm_benchmark run --ollamabin=~/code/ollama/ollama