Skip to content

fix model storage issue #2

fix model storage issue

fix model storage issue #2

Workflow file for this run

name: CI-CD-Compelete-Deployment
on:
workflow_dispatch:
jobs:
build-and-push-ecr-image:
name: Build and push ECR image
runs-on: ubuntu-latest
outputs:
commit_id: ${{ steps.get_commit_id.outputs.commit_id }}
steps:
- name: Checkout Code
uses: actions/checkout@v3
- name: Install Utilities
run: |
sudo apt-get update
sudo apt-get install -y jq unzip
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v1
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ secrets.AWS_REGION }}
- name: Login to Amazon ECR
id: login-ecr
uses: aws-actions/amazon-ecr-login@v1
- name: Get latest commit ID
id: get_commit_id
run: |
latest_commit=$(git rev-parse HEAD)
echo "::set-output name=commit_id::$latest_commit"
- name: Display the commit ID
run: |
echo "Latest commit ID is: ${{ steps.get_commit_id.outputs.commit_id }}"
- name: Build, tag, and push image to Amazon ECR
id: build-image
env:
ECR_REGISTRY: ${{ steps.login-ecr.outputs.registry }}
ECR_REPOSITORY: ${{ secrets.ECR_REPOSITORY_NAME }}
IMAGE_TAG: latest
run: |
# Build a docker container and
# push it to ECR so that it can
# be deployed to ECS.
docker build -t $ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG .
docker push $ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG
echo "::set-output name=image::$ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG"
launch-runner:
runs-on: ubuntu-latest
needs: build-and-push-ecr-image
outputs:
commit_id: ${{ steps.get_commit_id_runner.outputs.commit_id }}
steps:
- uses: actions/checkout@v3
- uses: iterative/setup-cml@v2
- name: Display the commit ID
run: |
echo "Latest commit ID is: ${{ needs.build-and-push-ecr-image.outputs.commit_id }}"
- name: Get latest commit ID
id: get_commit_id_runner
run: |
echo "::set-output name=commit_id::${{ needs.build-and-push-ecr-image.outputs.commit_id }}"
- name: Deploy runner on AWS EC2
env:
REPO_TOKEN: ${{ secrets.PERSONAL_ACCESS_TOKEN }}
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
run: |
cml runner launch \
--cloud=aws \
--name=session-08 \
--cloud-region=ap-south-1 \
--cloud-type=g4dn.xlarge \
--cloud-hdd-size=64 \
--cloud-spot \
--single \
--labels=cml-gpu \
--idle-timeout=100
train-and-deploy:
runs-on: [self-hosted, cml-gpu]
needs: launch-runner
outputs:
commit_id: ${{ steps.get_commit_id_ec2.outputs.commit_id }}
timeout-minutes: 20
# container:
# image: docker://pytorch/pytorch:2.4.0-cuda12.4-cudnn9-runtime
# options: --gpus all
# runs-on: ubuntu-latest
steps:
- name: Display CUDA Version
run: |
echo "CUDA Version:"
nvcc --version || true
- name: Display cuDNN Version
run: |
echo "cuDNN Version:"
cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2 || true
- name: Verify EC2 Instance
run: |
echo "Checking instance information..."
# Check if we're on EC2
TOKEN=$(curl -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 21600")
curl -H "X-aws-ec2-metadata-token: $TOKEN" http://169.254.169.254/latest/meta-data/instance-type
echo "Checking system resources..."
lscpu
free -h
df -h
nvidia-smi # This will show GPU if available
echo "Checking environment..."
env | grep AWS || true
hostname
whoami
pwd
# Install the AWS CLI if not already available
if ! command -v aws &> /dev/null; then
apt-get update
apt-get install -y awscli
fi
# Get ECR login command and execute it
$(aws ecr get-login --no-include-email --region ap-south-1)
aws ecr get-login-password --region ap-south-1 | docker login --username AWS --password-stdin 306093656765.dkr.ecr.ap-south-1.amazonaws.com
- name: Set up AWS CLI credentials
env:
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
AWS_DEFAULT_REGION: ap-south-1 # Change to your desired region
run: |
# Create the AWS config and credentials files
mkdir -p ~/.aws
echo "[default]" > ~/.aws/config
echo "region=${AWS_DEFAULT_REGION}" >> ~/.aws/config
echo "[default]" > ~/.aws/credentials
echo "aws_access_key_id=${AWS_ACCESS_KEY_ID}" >> ~/.aws/credentials
echo "aws_secret_access_key=${AWS_SECRET_ACCESS_KEY}" >> ~/.aws/credentials
- name: Test AWS CLI
run: |
# Now you can run any AWS CLI command
aws s3 ls # Example command to list S3 buckets
- name: Pull Docker image from ECR
run: |
docker pull ${{secrets.AWS_ECR_LOGIN_URI}}/${{ secrets.ECR_REPOSITORY_NAME }}:latest
ls -a
- name: Run DVC commands in container
run: |
mkdir -p model_storage
mkdir -p gradio_demo
docker run --gpus=all \
--name session-10-container \
-v "$(pwd)/model_storage:/workspace/model_storage" \
-e AWS_ACCESS_KEY_ID=${{ secrets.AWS_ACCESS_KEY_ID }} \
-e AWS_SECRET_ACCESS_KEY=${{ secrets.AWS_SECRET_ACCESS_KEY }} \
-e AWS_DEFAULT_REGION=${{ secrets.AWS_REGION }} \
${{ secrets.AWS_ECR_LOGIN_URI }}/${{ secrets.ECR_REPOSITORY_NAME }}:latest \
/bin/bash -c "
dvc pull -r myremote && \
mkdir -p model_storage && \
dvc repro -f
"
# # Wait a moment to ensure the container has started
# sleep 5
ls model_storage/
docker cp session-10-container:/workspace/gradio_demo/. ./gradio_demo/
ls ./gradio_demo/
# # Print logs from the container
# docker logs $CONTAINER_ID
# # Stop the container after retrieving logs
# docker stop $CONTAINER_ID
- name: List files in folder
run: |
ls -l ./
- name: Install jq
run: |
sudo apt-get update
sudo apt-get install -y jq
- name: List files in folder
run: |
ls -l ./model_storage
- name: Read best checkpoint file name
id: read_checkpoint
run: |
checkpoint_file=$(head -n 1 ./model_storage/best_model_checkpoint.txt)
echo "CHECKPOINT_FILE=$checkpoint_file" >> $GITHUB_ENV
- name: Upload checkpoint to S3
run: |
checkpoint_path="${{ env.CHECKPOINT_FILE }}" # Use the checkpoint path from the file
bucket_name="mybucket-emlo-mumbai" # Change to your S3 bucket name
s3_key="session-08-checkpoint/${{ needs.launch-runner.outputs.commit_id }}/$(basename "$checkpoint_path")" # Define S3 key
echo "Uploading $checkpoint_path to s3://$bucket_name/$s3_key"
aws s3 cp "$checkpoint_path" "s3://$bucket_name/$s3_key"
# Deployment on Huggingface
- name: Install Gradio
run: |
cd gradio_demo/

Check failure on line 228 in .github/workflows/ec2-pipeline.yml

View workflow run for this annotation

GitHub Actions / .github/workflows/ec2-pipeline.yml

Invalid workflow file

You have an error in your yaml syntax on line 228
python -m pip install -r requirements.txt
- name: Log in to Hugging Face
run: python -c 'import huggingface_hub; huggingface_hub.login(token="${{ secrets.hf_token }}")'
- name: Deploy to Spaces
run: gradio deploy
- name: Clean previous images and containers
run: |
docker system prune -f