Skip to content

I have worked on the analysis of reviews of an ecommerce clothing website where I have performed EDA and sentimental analysis. For sentiment analysis, I performed cleaning on it like removing the punctuation and the stop words from it, then tokenizing and like removing words which were not important like which have length less than 3. I performe…

Notifications You must be signed in to change notification settings

akshaykapoor347/NLPClothingReview

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 

Repository files navigation

NLPClothingReview

I have worked on the analysis of reviews of an ecommerce clothing website where I have performed EDA and sentimental analysis. For sentiment analysis, I performed cleaning on it like removing the punctuation and the stop words from it, then tokenizing and like removing words which were not important like which have length less than 3. I performed analysis such as finding the most common words used in a review. (dress, size, love, like, top) Then made use of text blob to find the sentiment of the reviews and created a list of most commonly used words in positive review and a negative review. Then used a classification algorithm like naïve Bayes to train the model to rate to a review and tested it on the new data. Count vectorizer Results: 1) Reviews with 3 and 4-star rating had the longest reviews. 2) Users shopped for tops 60 percent more than bottoms 3) Got 85 percent accuracy in the naïve bayes model.

About

I have worked on the analysis of reviews of an ecommerce clothing website where I have performed EDA and sentimental analysis. For sentiment analysis, I performed cleaning on it like removing the punctuation and the stop words from it, then tokenizing and like removing words which were not important like which have length less than 3. I performe…

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published