Skip to content

andreuboix/Numerical-Linear-Algebra

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pràctiques ALN

  1. Pràctica 1: C++. LU Decomposition and main operations of matrices
  • LU Decomposition.
  • Gauss and resolution (Doolittle method).
  • 1,2,inf vectorial norms of the error yielded when calculating the solution.
  • 1,2,inf matricial norms of the error yielded when decomposing the matrix A.
  • Calculation of the inverse matrix.
  • Calculation of the transposed matrix.
  • Calculation of the determinant of the matrix A.
  • Calculation of the S= A^{T} * A symmetric matrix.
  • Calculation of the eigenvalues of any matrix.
  1. Pràctica 2:MATLAB. Approximation by least squares. Quadratic model.
  • QR Decomposition.
  • Overdeterminate system resolution.
  • Eigenvalues and eigenvectors calculation without the eig() function.
  • Error yielded when calculating the solution.

3.Pràctica 3: MATLAB. Main iterative methods.

  • Jacobi method.
  • Gauss-Seidel method.
  • OverRelaxation method.

4.Pràctica 4: MATLAB. Power Methods / Eigenvalues

  • Mètode de la potència
  • Mètode de la potència inversa. INVERSE
  • Mètode de la potència desplaçada. TRANSLATED.
  • Mètode de la potència inversa desplaçada. INVERSE AND TRANSLATED. (we could also use LU to solve A(z_{k+1}) = z_{k})

Releases

No releases published

Packages

No packages published