Skip to content

Official implementation of "Automated Non-Invasive Analysis of Motile Sperms Using Sperm Feature-Correlated Network".

License

Notifications You must be signed in to change notification settings

anthonyweidai/SFCNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SFCNet: Automated Non-Invasive Analysis of Motile Sperms Using Sperm Feature-Correlated Network

Welcome to the official implementation of ``SFCNet: Automated Non-Invasive Analysis of Motile Sperms Using Sperm Feature-Correlated Network''. This repository offers a robust toolkit designed for advanced tasks in deep learning and computer vision, specifically tailored for semantic segmentation and object detection. It supports features such as training progress visualization, logging, and calculation of standard metrics.

Installation

To install the SFCNet implementation, please follow the detailed instructions in INSTALL.md.

Benchmark and Evaluation

Please refer to DATA.md for guidelines on preparing the datasets for benchmarking and training.

Execute the training and evaluation processes using the configuration settings for segmentation in segmentation.sh and for detection in detection.sh script.

Citation

If you use this implementation in your research, please consider citing our paper as follows:

@ARTICLE{10542677,
    author={Dai, Wei and Wu, Zixuan and Liu, Rui and Wu, Tianyi and Wang, Min and Zhou, Junxian and Zhang, Zhuoran and Liu, Jun},
    journal={IEEE Transactions on Automation Science and Engineering}, 
    title={Automated Non-Invasive Analysis of Motile Sperms Using Sperm Feature-Correlated Network}, 
    year={2024},
    volume={},
    number={},
    pages={1-11},
    doi={10.1109/TASE.2024.3404488}
}