Skip to content

Releases: antoinejeannot/jurisprudence

Release v2024.10.10

10 Oct 01:38
Compare
Choose a tag to compare

Dataset on HF GitHub

✨ Jurisprudence, release v2024.10.10 🏛️

Jurisprudence is an open-source project that automates the collection and distribution of French legal decisions. It leverages the Judilibre API provided by the Cour de Cassation to:

  • Fetch rulings from major French courts (Cour de Cassation, Cour d'Appel, Tribunal Judiciaire)
  • Process and convert the data into easily accessible formats
  • Publish & version updated datasets on Hugging Face every few days.

It aims to democratize access to legal information, enabling researchers, legal professionals and the public to easily access and analyze French court decisions.
Whether you're conducting legal research, developing AI models, or simply interested in French jurisprudence, this project might provide a valuable, open resource for exploring the French legal landscape.

📊 Exported Data

Jurisdiction Jurisprudences Oldest Latest Tokens JSONL (gzipped) Parquet
Cour d'Appel 390,728 1996-03-25 2024-10-04 1,956,701,958 Download (1.71 GB) Download (2.86 GB)
Tribunal Judiciaire 74,122 2023-12-14 2024-10-03 265,119,072 Download (238.30 MB) Download (396.52 MB)
Cour de Cassation 536,114 1860-08-01 2024-10-09 1,106,395,288 Download (930.84 MB) Download (1.58 GB)
Total 1,000,964 1860-08-01 2024-10-09 3,328,216,318 2.85 GB 4.82 GB

Latest update date: 2024-10-10

# Tokens are computed using GPT-4 tiktoken and the text column.

🤗 Hugging Face Dataset

The up-to-date jurisprudences dataset is available at: https://huggingface.co/datasets/antoinejeannot/jurisprudence in JSONL (gzipped) and parquet formats.

This allows you to easily fetch, query, process and index all jurisprudences in the blink of an eye!

Usage Examples

HuggingFace Datasets

# pip install datasets
import datasets

dataset = load_dataset("antoinejeannot/jurisprudence")
dataset.shape
>> {'tribunal_judiciaire': (58986, 33),
'cour_d_appel': (378392, 33),
'cour_de_cassation': (534258, 33)}

# alternatively, you can load each jurisdiction separately
cour_d_appel = load_dataset("antoinejeannot/jurisprudence", "cour_d_appel")
tribunal_judiciaire = load_dataset("antoinejeannot/jurisprudence", "tribunal_judiciaire")
cour_de_cassation = load_dataset("antoinejeannot/jurisprudence", "cour_de_cassation") 

Leveraging datasets allows you to easily ingest data to PyTorch, Tensorflow, Jax etc.

BYOL: Bring Your Own Lib

For analysis, using polars, pandas or duckdb is quite common and also possible:

url = "https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_de_cassation.parquet"  # or tribunal_judiciaire.parquet, cour_d_appel.parquet

# pip install polars
import polars as pl
df = pl.scan_parquet(url)

# pip install pandas
import pandas as pd
df = pd.read_parquet(url)

# pip install duckdb
import duckdb
table = duckdb.read_parquet(url)

🪪 Citing & Authors

If you use this code in your research, please use the following BibTeX entry:

@misc{antoinejeannot2024,
author = {Jeannot Antoine and {Cour de Cassation}},
title = {Jurisprudence},
year = {2024},
howpublished = {\url{https://github.com/antoinejeannot/jurisprudence}},
note = {Data source: API Judilibre, \url{https://www.data.gouv.fr/en/datasets/api-judilibre/}}
}

This project relies on the Judilibre API par la Cour de Cassation, which is made available under the Open License 2.0 (Licence Ouverte 2.0)

It scans the API every 3 days at midnight UTC and exports its data in various formats to Hugging Face, without any fundamental transformation but conversions.

license ouverte / open license

Release v2024.10.07

07 Oct 01:36
Compare
Choose a tag to compare

Dataset on HF GitHub

✨ Jurisprudence, release v2024.10.07 🏛️

Jurisprudence is an open-source project that automates the collection and distribution of French legal decisions. It leverages the Judilibre API provided by the Cour de Cassation to:

  • Fetch rulings from major French courts (Cour de Cassation, Cour d'Appel, Tribunal Judiciaire)
  • Process and convert the data into easily accessible formats
  • Publish & version updated datasets on Hugging Face every few days.

It aims to democratize access to legal information, enabling researchers, legal professionals and the public to easily access and analyze French court decisions.
Whether you're conducting legal research, developing AI models, or simply interested in French jurisprudence, this project might provide a valuable, open resource for exploring the French legal landscape.

📊 Exported Data

Jurisdiction Jurisprudences Oldest Latest Tokens JSONL (gzipped) Parquet
Cour d'Appel 389,424 1996-03-25 2024-10-03 1,950,981,319 Download (1.71 GB) Download (2.85 GB)
Tribunal Judiciaire 72,947 2023-12-14 2024-10-01 261,566,963 Download (234.92 MB) Download (391.04 MB)
Cour de Cassation 535,867 1860-08-01 2024-10-03 1,106,176,011 Download (930.58 MB) Download (1.58 GB)
Total 998,238 1860-08-01 2024-10-03 3,318,724,293 2.85 GB 4.81 GB

Latest update date: 2024-10-07

# Tokens are computed using GPT-4 tiktoken and the text column.

🤗 Hugging Face Dataset

The up-to-date jurisprudences dataset is available at: https://huggingface.co/datasets/antoinejeannot/jurisprudence in JSONL (gzipped) and parquet formats.

This allows you to easily fetch, query, process and index all jurisprudences in the blink of an eye!

Usage Examples

HuggingFace Datasets

# pip install datasets
import datasets

dataset = load_dataset("antoinejeannot/jurisprudence")
dataset.shape
>> {'tribunal_judiciaire': (58986, 33),
'cour_d_appel': (378392, 33),
'cour_de_cassation': (534258, 33)}

# alternatively, you can load each jurisdiction separately
cour_d_appel = load_dataset("antoinejeannot/jurisprudence", "cour_d_appel")
tribunal_judiciaire = load_dataset("antoinejeannot/jurisprudence", "tribunal_judiciaire")
cour_de_cassation = load_dataset("antoinejeannot/jurisprudence", "cour_de_cassation") 

Leveraging datasets allows you to easily ingest data to PyTorch, Tensorflow, Jax etc.

BYOL: Bring Your Own Lib

For analysis, using polars, pandas or duckdb is quite common and also possible:

url = "https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_de_cassation.parquet"  # or tribunal_judiciaire.parquet, cour_d_appel.parquet

# pip install polars
import polars as pl
df = pl.scan_parquet(url)

# pip install pandas
import pandas as pd
df = pd.read_parquet(url)

# pip install duckdb
import duckdb
table = duckdb.read_parquet(url)

🪪 Citing & Authors

If you use this code in your research, please use the following BibTeX entry:

@misc{antoinejeannot2024,
author = {Jeannot Antoine and {Cour de Cassation}},
title = {Jurisprudence},
year = {2024},
howpublished = {\url{https://github.com/antoinejeannot/jurisprudence}},
note = {Data source: API Judilibre, \url{https://www.data.gouv.fr/en/datasets/api-judilibre/}}
}

This project relies on the Judilibre API par la Cour de Cassation, which is made available under the Open License 2.0 (Licence Ouverte 2.0)

It scans the API every 3 days at midnight UTC and exports its data in various formats to Hugging Face, without any fundamental transformation but conversions.

license ouverte / open license

Release v2024.10.04

04 Oct 01:39
Compare
Choose a tag to compare

Dataset on HF GitHub

✨ Jurisprudence, release v2024.10.04 🏛️

Jurisprudence is an open-source project that automates the collection and distribution of French legal decisions. It leverages the Judilibre API provided by the Cour de Cassation to:

  • Fetch rulings from major French courts (Cour de Cassation, Cour d'Appel, Tribunal Judiciaire)
  • Process and convert the data into easily accessible formats
  • Publish & version updated datasets on Hugging Face every few days.

It aims to democratize access to legal information, enabling researchers, legal professionals and the public to easily access and analyze French court decisions.
Whether you're conducting legal research, developing AI models, or simply interested in French jurisprudence, this project might provide a valuable, open resource for exploring the French legal landscape.

📊 Exported Data

Jurisdiction Jurisprudences Oldest Latest Tokens JSONL (gzipped) Parquet
Cour d'Appel 387,945 1996-03-25 2024-09-27 1,943,194,589 Download (1.70 GB) Download (2.84 GB)
Tribunal Judiciaire 70,890 2023-12-14 2024-09-26 254,152,898 Download (227.99 MB) Download (379.79 MB)
Cour de Cassation 535,692 1860-08-01 2024-10-03 1,105,832,888 Download (930.45 MB) Download (1.58 GB)
Total 994,527 1860-08-01 2024-10-03 3,303,180,375 2.83 GB 4.79 GB

Latest update date: 2024-10-04

# Tokens are computed using GPT-4 tiktoken and the text column.

🤗 Hugging Face Dataset

The up-to-date jurisprudences dataset is available at: https://huggingface.co/datasets/antoinejeannot/jurisprudence in JSONL (gzipped) and parquet formats.

This allows you to easily fetch, query, process and index all jurisprudences in the blink of an eye!

Usage Examples

HuggingFace Datasets

# pip install datasets
import datasets

dataset = load_dataset("antoinejeannot/jurisprudence")
dataset.shape
>> {'tribunal_judiciaire': (58986, 33),
'cour_d_appel': (378392, 33),
'cour_de_cassation': (534258, 33)}

# alternatively, you can load each jurisdiction separately
cour_d_appel = load_dataset("antoinejeannot/jurisprudence", "cour_d_appel")
tribunal_judiciaire = load_dataset("antoinejeannot/jurisprudence", "tribunal_judiciaire")
cour_de_cassation = load_dataset("antoinejeannot/jurisprudence", "cour_de_cassation") 

Leveraging datasets allows you to easily ingest data to PyTorch, Tensorflow, Jax etc.

BYOL: Bring Your Own Lib

For analysis, using polars, pandas or duckdb is quite common and also possible:

url = "https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_de_cassation.parquet"  # or tribunal_judiciaire.parquet, cour_d_appel.parquet

# pip install polars
import polars as pl
df = pl.scan_parquet(url)

# pip install pandas
import pandas as pd
df = pd.read_parquet(url)

# pip install duckdb
import duckdb
table = duckdb.read_parquet(url)

🪪 Citing & Authors

If you use this code in your research, please use the following BibTeX entry:

@misc{antoinejeannot2024,
author = {Jeannot Antoine and {Cour de Cassation}},
title = {Jurisprudence},
year = {2024},
howpublished = {\url{https://github.com/antoinejeannot/jurisprudence}},
note = {Data source: API Judilibre, \url{https://www.data.gouv.fr/en/datasets/api-judilibre/}}
}

This project relies on the Judilibre API par la Cour de Cassation, which is made available under the Open License 2.0 (Licence Ouverte 2.0)

It scans the API every 3 days at midnight UTC and exports its data in various formats to Hugging Face, without any fundamental transformation but conversions.

license ouverte / open license

Release v2024.10.01

01 Oct 01:37
Compare
Choose a tag to compare

Dataset on HF GitHub

✨ Jurisprudence, release v2024.10.01 🏛️

Jurisprudence is an open-source project that automates the collection and distribution of French legal decisions. It leverages the Judilibre API provided by the Cour de Cassation to:

  • Fetch rulings from major French courts (Cour de Cassation, Cour d'Appel, Tribunal Judiciaire)
  • Process and convert the data into easily accessible formats
  • Publish & version updated datasets on Hugging Face every few days.

It aims to democratize access to legal information, enabling researchers, legal professionals and the public to easily access and analyze French court decisions.
Whether you're conducting legal research, developing AI models, or simply interested in French jurisprudence, this project might provide a valuable, open resource for exploring the French legal landscape.

📊 Exported Data

Jurisdiction Jurisprudences Oldest Latest Tokens JSONL (gzipped) Parquet
Cour d'Appel 386,890 1996-03-25 2024-09-26 1,939,163,274 Download (1.70 GB) Download (2.83 GB)
Tribunal Judiciaire 70,438 2023-12-14 2024-09-25 252,670,660 Download (226.51 MB) Download (377.41 MB)
Cour de Cassation 535,638 1860-08-01 2024-09-26 1,105,557,665 Download (930.18 MB) Download (1.58 GB)
Total 992,966 1860-08-01 2024-09-26 3,297,391,599 2.83 GB 4.78 GB

Latest update date: 2024-10-01

# Tokens are computed using GPT-4 tiktoken and the text column.

🤗 Hugging Face Dataset

The up-to-date jurisprudences dataset is available at: https://huggingface.co/datasets/antoinejeannot/jurisprudence in JSONL (gzipped) and parquet formats.

This allows you to easily fetch, query, process and index all jurisprudences in the blink of an eye!

Usage Examples

HuggingFace Datasets

# pip install datasets
import datasets

dataset = load_dataset("antoinejeannot/jurisprudence")
dataset.shape
>> {'tribunal_judiciaire': (58986, 33),
'cour_d_appel': (378392, 33),
'cour_de_cassation': (534258, 33)}

# alternatively, you can load each jurisdiction separately
cour_d_appel = load_dataset("antoinejeannot/jurisprudence", "cour_d_appel")
tribunal_judiciaire = load_dataset("antoinejeannot/jurisprudence", "tribunal_judiciaire")
cour_de_cassation = load_dataset("antoinejeannot/jurisprudence", "cour_de_cassation") 

Leveraging datasets allows you to easily ingest data to PyTorch, Tensorflow, Jax etc.

BYOL: Bring Your Own Lib

For analysis, using polars, pandas or duckdb is quite common and also possible:

url = "https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_de_cassation.parquet"  # or tribunal_judiciaire.parquet, cour_d_appel.parquet

# pip install polars
import polars as pl
df = pl.scan_parquet(url)

# pip install pandas
import pandas as pd
df = pd.read_parquet(url)

# pip install duckdb
import duckdb
table = duckdb.read_parquet(url)

🪪 Citing & Authors

If you use this code in your research, please use the following BibTeX entry:

@misc{antoinejeannot2024,
author = {Jeannot Antoine and {Cour de Cassation}},
title = {Jurisprudence},
year = {2024},
howpublished = {\url{https://github.com/antoinejeannot/jurisprudence}},
note = {Data source: API Judilibre, \url{https://www.data.gouv.fr/en/datasets/api-judilibre/}}
}

This project relies on the Judilibre API par la Cour de Cassation, which is made available under the Open License 2.0 (Licence Ouverte 2.0)

It scans the API every 3 days at midnight UTC and exports its data in various formats to Hugging Face, without any fundamental transformation but conversions.

license ouverte / open license

Release v2024.09.28

28 Sep 14:46
Compare
Choose a tag to compare

Dataset on HF GitHub

✨ Jurisprudence, release v2024.09.28 🏛️

Jurisprudence is an open-source project that automates the collection and distribution of French legal decisions. It leverages the Judilibre API provided by the Cour de Cassation to:

  • Fetch rulings from major French courts (Cour de Cassation, Cour d'Appel, Tribunal Judiciaire)
  • Process and convert the data into easily accessible formats
  • Publish & version updated datasets on Hugging Face every few days.

It aims to democratize access to legal information, enabling researchers, legal professionals and the public to easily access and analyze French court decisions.
Whether you're conducting legal research, developing AI models, or simply interested in French jurisprudence, this project might provide a valuable, open resource for exploring the French legal landscape.

📊 Exported Data

Jurisdiction Jurisprudences Oldest Latest Tokens JSONL (gzipped) Parquet
Cour d'Appel 385,381 1996-03-25 2024-09-26 1,931,207,472 Download (1.69 GB) Download (2.82 GB)
Tribunal Judiciaire 64,925 2023-12-15 2024-09-20 230,911,217 Download (207.69 MB) Download (345.73 MB)
Cour de Cassation 535,266 1860-08-01 2024-09-26 1,105,046,369 Download (929.72 MB) Download (1.57 GB)
Total 985,572 1860-08-01 2024-09-26 3,267,165,058 2.80 GB 4.74 GB

Latest update date: 2024-09-28

# Tokens are computed using GPT-4 tiktoken and the text column.

🤗 Hugging Face Dataset

The up-to-date jurisprudences dataset is available at: https://huggingface.co/datasets/antoinejeannot/jurisprudence in JSONL (gzipped) and parquet formats.

This allows you to easily fetch, query, process and index all jurisprudences in the blink of an eye!

Usage Examples

HuggingFace Datasets

# pip install datasets
import datasets

dataset = load_dataset("antoinejeannot/jurisprudence")
dataset.shape
>> {'tribunal_judiciaire': (58986, 33),
'cour_d_appel': (378392, 33),
'cour_de_cassation': (534258, 33)}

# alternatively, you can load each jurisdiction separately
cour_d_appel = load_dataset("antoinejeannot/jurisprudence", "cour_d_appel")
tribunal_judiciaire = load_dataset("antoinejeannot/jurisprudence", "tribunal_judiciaire")
cour_de_cassation = load_dataset("antoinejeannot/jurisprudence", "cour_de_cassation") 

Leveraging datasets allows you to easily ingest data to PyTorch, Tensorflow, Jax etc.

BYOL: Bring Your Own Lib

For analysis, using polars, pandas or duckdb is quite common and also possible:

url = "https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_de_cassation.parquet"  # or tribunal_judiciaire.parquet, cour_d_appel.parquet

# pip install polars
import polars as pl
df = pl.scan_parquet(url)

# pip install pandas
import pandas as pd
df = pd.read_parquet(url)

# pip install duckdb
import duckdb
table = duckdb.read_parquet(url)

🪪 Citing & Authors

If you use this code in your research, please use the following BibTeX entry:

@misc{antoinejeannot2024,
author = {Jeannot Antoine and {Cour de Cassation}},
title = {Jurisprudence},
year = {2024},
howpublished = {\url{https://github.com/antoinejeannot/jurisprudence}},
note = {Data source: API Judilibre, \url{https://www.data.gouv.fr/en/datasets/api-judilibre/}}
}

This project relies on the Judilibre API par la Cour de Cassation, which is made available under the Open License 2.0 (Licence Ouverte 2.0)

It scans the API every 3 days at midnight UTC and exports its data in various formats to Hugging Face, without any fundamental transformation but conversions.

license ouverte / open license

Release v2024.09.25

25 Sep 01:35
Compare
Choose a tag to compare

Dataset on HF GitHub

✨ Jurisprudence, release v2024.09.25 🏛️

Jurisprudence is an open-source project that automates the collection and distribution of French legal decisions. It leverages the Judilibre API provided by the Cour de Cassation to:

  • Fetch rulings from major French courts (Cour de Cassation, Cour d'Appel, Tribunal Judiciaire)
  • Process and convert the data into easily accessible formats
  • Publish & version updated datasets on Hugging Face every few days.

It aims to democratize access to legal information, enabling researchers, legal professionals and the public to easily access and analyze French court decisions.
Whether you're conducting legal research, developing AI models, or simply interested in French jurisprudence, this project might provide a valuable, open resource for exploring the French legal landscape.

📊 Exported Data

Jurisdiction Jurisprudences Oldest Latest Tokens JSONL (gzipped) Parquet
Cour d'Appel 384,829 1996-03-25 2024-09-19 1,928,113,691 Download (1.69 GB) Download (2.82 GB)
Tribunal Judiciaire 68,017 2023-12-14 2024-09-19 243,676,364 Download (218.16 MB) Download (363.47 MB)
Cour de Cassation 535,243 1860-08-01 2024-09-24 1,105,045,930 Download (929.79 MB) Download (1.58 GB)
Total 988,089 1860-08-01 2024-09-24 3,276,835,985 2.81 GB 4.75 GB

Latest update date: 2024-09-25

# Tokens are computed using GPT-4 tiktoken and the text column.

🤗 Hugging Face Dataset

The up-to-date jurisprudences dataset is available at: https://huggingface.co/datasets/antoinejeannot/jurisprudence in JSONL (gzipped) and parquet formats.

This allows you to easily fetch, query, process and index all jurisprudences in the blink of an eye!

Usage Examples

HuggingFace Datasets

# pip install datasets
import datasets

dataset = load_dataset("antoinejeannot/jurisprudence")
dataset.shape
>> {'tribunal_judiciaire': (58986, 33),
'cour_d_appel': (378392, 33),
'cour_de_cassation': (534258, 33)}

# alternatively, you can load each jurisdiction separately
cour_d_appel = load_dataset("antoinejeannot/jurisprudence", "cour_d_appel")
tribunal_judiciaire = load_dataset("antoinejeannot/jurisprudence", "tribunal_judiciaire")
cour_de_cassation = load_dataset("antoinejeannot/jurisprudence", "cour_de_cassation") 

Leveraging datasets allows you to easily ingest data to PyTorch, Tensorflow, Jax etc.

BYOL: Bring Your Own Lib

For analysis, using polars, pandas or duckdb is quite common and also possible:

url = "https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_de_cassation.parquet"  # or tribunal_judiciaire.parquet, cour_d_appel.parquet

# pip install polars
import polars as pl
df = pl.scan_parquet(url)

# pip install pandas
import pandas as pd
df = pd.read_parquet(url)

# pip install duckdb
import duckdb
table = duckdb.read_parquet(url)

🪪 Citing & Authors

If you use this code in your research, please use the following BibTeX entry:

@misc{antoinejeannot2024,
author = {Jeannot Antoine and {Cour de Cassation}},
title = {Jurisprudence},
year = {2024},
howpublished = {\url{https://github.com/antoinejeannot/jurisprudence}},
note = {Data source: API Judilibre, \url{https://www.data.gouv.fr/en/datasets/api-judilibre/}}
}

This project relies on the Judilibre API par la Cour de Cassation, which is made available under the Open License 2.0 (Licence Ouverte 2.0)

It scans the API every 3 days at midnight UTC and exports its data in various formats to Hugging Face, without any fundamental transformation but conversions.

license ouverte / open license

Release v2024.09.22

22 Sep 01:53
Compare
Choose a tag to compare

Dataset on HF GitHub

✨ Jurisprudence, release v2024.09.22 🏛️

Jurisprudence is an open-source project that automates the collection and distribution of French legal decisions. It leverages the Judilibre API provided by the Cour de Cassation to:

  • Fetch rulings from major French courts (Cour de Cassation, Cour d'Appel, Tribunal Judiciaire)
  • Process and convert the data into easily accessible formats
  • Publish & version updated datasets on Hugging Face every few days.

It aims to democratize access to legal information, enabling researchers, legal professionals and the public to easily access and analyze French court decisions.
Whether you're conducting legal research, developing AI models, or simply interested in French jurisprudence, this project might provide a valuable, open resource for exploring the French legal landscape.

📊 Exported Data

Jurisdiction Jurisprudences Oldest Latest Tokens JSONL (gzipped) Parquet
Cour d'Appel 382,814 1996-03-25 2024-09-16 1,916,979,068 Download (1.68 GB) Download (2.80 GB)
Tribunal Judiciaire 66,520 2023-12-14 2024-09-16 238,362,958 Download (213.07 MB) Download (355.39 MB)
Cour de Cassation 534,822 1860-08-01 2024-09-19 1,104,700,489 Download (929.57 MB) Download (1.57 GB)
Total 984,156 1860-08-01 2024-09-19 3,260,042,515 2.79 GB 4.72 GB

Latest update date: 2024-09-22

# Tokens are computed using GPT-4 tiktoken and the text column.

🤗 Hugging Face Dataset

The up-to-date jurisprudences dataset is available at: https://huggingface.co/datasets/antoinejeannot/jurisprudence in JSONL (gzipped) and parquet formats.

This allows you to easily fetch, query, process and index all jurisprudences in the blink of an eye!

Usage Examples

HuggingFace Datasets

# pip install datasets
import datasets

dataset = load_dataset("antoinejeannot/jurisprudence")
dataset.shape
>> {'tribunal_judiciaire': (58986, 33),
'cour_d_appel': (378392, 33),
'cour_de_cassation': (534258, 33)}

# alternatively, you can load each jurisdiction separately
cour_d_appel = load_dataset("antoinejeannot/jurisprudence", "cour_d_appel")
tribunal_judiciaire = load_dataset("antoinejeannot/jurisprudence", "tribunal_judiciaire")
cour_de_cassation = load_dataset("antoinejeannot/jurisprudence", "cour_de_cassation") 

Leveraging datasets allows you to easily ingest data to PyTorch, Tensorflow, Jax etc.

BYOL: Bring Your Own Lib

For analysis, using polars, pandas or duckdb is quite common and also possible:

url = "https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_de_cassation.parquet"  # or tribunal_judiciaire.parquet, cour_d_appel.parquet

# pip install polars
import polars as pl
df = pl.scan_parquet(url)

# pip install pandas
import pandas as pd
df = pd.read_parquet(url)

# pip install duckdb
import duckdb
table = duckdb.read_parquet(url)

🪪 Citing & Authors

If you use this code in your research, please use the following BibTeX entry:

@misc{antoinejeannot2024,
author = {Jeannot Antoine and {Cour de Cassation}},
title = {Jurisprudence},
year = {2024},
howpublished = {\url{https://github.com/antoinejeannot/jurisprudence}},
note = {Data source: API Judilibre, \url{https://www.data.gouv.fr/en/datasets/api-judilibre/}}
}

This project relies on the Judilibre API par la Cour de Cassation, which is made available under the Open License 2.0 (Licence Ouverte 2.0)

It scans the API every 3 days at midnight UTC and exports its data in various formats to Hugging Face, without any fundamental transformation but conversions.

license ouverte / open license

Release v2024.09.19

19 Sep 12:48
Compare
Choose a tag to compare

Dataset on HF GitHub

✨ Jurisprudence, release v2024.09.19 🏛️

Jurisprudence is an open-source project that automates the collection and distribution of French legal decisions. It leverages the Judilibre API provided by the Cour de Cassation to:

  • Fetch rulings from major French courts (Cour de Cassation, Cour d'Appel, Tribunal Judiciaire)
  • Process and convert the data into easily accessible formats
  • Publish & version updated datasets on Hugging Face every few days.

It aims to democratize access to legal information, enabling researchers, legal professionals and the public to easily access and analyze French court decisions.
Whether you're conducting legal research, developing AI models, or simply interested in French jurisprudence, this project might provide a valuable, open resource for exploring the French legal landscape.

📊 Exported Data

Jurisdiction Jurisprudences Oldest Latest Tokens JSONL (gzipped) Parquet
Cour d'Appel 381,768 1996-03-25 2024-09-13 1,911,897,207 Download (1.67 GB) Download (2.80 GB)
Tribunal Judiciaire 65,343 2023-12-14 2024-09-12 234,306,537 Download (209.21 MB) Download (349.09 MB)
Cour de Cassation 534,787 1860-08-01 2024-09-12 1,104,517,382 Download (929.35 MB) Download (1.57 GB)
Total 981,898 1860-08-01 2024-09-13 3,250,721,126 2.79 GB 4.71 GB

Latest update date: 2024-09-19

# Tokens are computed using GPT-4 tiktoken and the text column.

🤗 Hugging Face Dataset

The up-to-date jurisprudences dataset is available at: https://huggingface.co/datasets/antoinejeannot/jurisprudence in JSONL (gzipped) and parquet formats.

This allows you to easily fetch, query, process and index all jurisprudences in the blink of an eye!

Usage Examples

HuggingFace Datasets

# pip install datasets
import datasets

dataset = load_dataset("antoinejeannot/jurisprudence")
dataset.shape
>> {'tribunal_judiciaire': (58986, 33),
'cour_d_appel': (378392, 33),
'cour_de_cassation': (534258, 33)}

# alternatively, you can load each jurisdiction separately
cour_d_appel = load_dataset("antoinejeannot/jurisprudence", "cour_d_appel")
tribunal_judiciaire = load_dataset("antoinejeannot/jurisprudence", "tribunal_judiciaire")
cour_de_cassation = load_dataset("antoinejeannot/jurisprudence", "cour_de_cassation") 

Leveraging datasets allows you to easily ingest data to PyTorch, Tensorflow, Jax etc.

BYOL: Bring Your Own Lib

For analysis, using polars, pandas or duckdb is quite common and also possible:

url = "https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_de_cassation.parquet"  # or tribunal_judiciaire.parquet, cour_d_appel.parquet

# pip install polars
import polars as pl
df = pl.scan_parquet(url)

# pip install pandas
import pandas as pd
df = pd.read_parquet(url)

# pip install duckdb
import duckdb
table = duckdb.read_parquet(url)

🪪 Citing & Authors

If you use this code in your research, please use the following BibTeX entry:

@misc{antoinejeannot2024,
author = {Jeannot Antoine and {Cour de Cassation}},
title = {Jurisprudence},
year = {2024},
howpublished = {\url{https://github.com/antoinejeannot/jurisprudence}},
note = {Data source: API Judilibre, \url{https://www.data.gouv.fr/en/datasets/api-judilibre/}}
}

This project relies on the Judilibre API par la Cour de Cassation, which is made available under the Open License 2.0 (Licence Ouverte 2.0)

It scans the API every 3 days at midnight UTC and exports its data in various formats to Hugging Face, without any fundamental transformation but conversions.

license ouverte / open license

Release v2024.09.16

16 Sep 01:39
Compare
Choose a tag to compare

Dataset on HF GitHub

✨ Jurisprudence, release v2024.09.16 🏛️

Jurisprudence is an open-source project that automates the collection and distribution of French legal decisions. It leverages the Judilibre API provided by the Cour de Cassation to:

  • Fetch rulings from major French courts (Cour de Cassation, Cour d'Appel, Tribunal Judiciaire)
  • Process and convert the data into easily accessible formats
  • Publish & version updated datasets on Hugging Face every few days.

It aims to democratize access to legal information, enabling researchers, legal professionals and the public to easily access and analyze French court decisions.
Whether you're conducting legal research, developing AI models, or simply interested in French jurisprudence, this project might provide a valuable, open resource for exploring the French legal landscape.

📊 Exported Data

Jurisdiction Jurisprudences Oldest Latest Tokens JSONL (gzipped) Parquet
Cour d'Appel 375,591 1996-03-25 2024-08-13 1,885,046,909 Download (1.65 GB) Download (2.76 GB)
Tribunal Judiciaire 62,511 2023-12-14 2024-09-10 224,981,138 Download (201.56 MB) Download (335.73 MB)
Cour de Cassation 534,532 1860-08-01 2024-09-12 1,104,139,596 Download (929.09 MB) Download (1.57 GB)
Total 972,634 1860-08-01 2024-09-12 3,214,167,643 2.76 GB 4.66 GB

Latest update date: 2024-09-16

# Tokens are computed using GPT-4 tiktoken and the text column.

🤗 Hugging Face Dataset

The up-to-date jurisprudences dataset is available at: https://huggingface.co/datasets/antoinejeannot/jurisprudence in JSONL (gzipped) and parquet formats.

This allows you to easily fetch, query, process and index all jurisprudences in the blink of an eye!

Usage Examples

HuggingFace Datasets

# pip install datasets
import datasets

dataset = load_dataset("antoinejeannot/jurisprudence")
dataset.shape
>> {'tribunal_judiciaire': (58986, 33),
'cour_d_appel': (378392, 33),
'cour_de_cassation': (534258, 33)}

# alternatively, you can load each jurisdiction separately
cour_d_appel = load_dataset("antoinejeannot/jurisprudence", "cour_d_appel")
tribunal_judiciaire = load_dataset("antoinejeannot/jurisprudence", "tribunal_judiciaire")
cour_de_cassation = load_dataset("antoinejeannot/jurisprudence", "cour_de_cassation") 

Leveraging datasets allows you to easily ingest data to PyTorch, Tensorflow, Jax etc.

BYOL: Bring Your Own Lib

For analysis, using polars, pandas or duckdb is quite common and also possible:

url = "https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_de_cassation.parquet"  # or tribunal_judiciaire.parquet, cour_d_appel.parquet

# pip install polars
import polars as pl
df = pl.scan_parquet(url)

# pip install pandas
import pandas as pd
df = pd.read_parquet(url)

# pip install duckdb
import duckdb
table = duckdb.read_parquet(url)

🪪 Citing & Authors

If you use this code in your research, please use the following BibTeX entry:

@misc{antoinejeannot2024,
author = {Jeannot Antoine and {Cour de Cassation}},
title = {Jurisprudence},
year = {2024},
howpublished = {\url{https://github.com/antoinejeannot/jurisprudence}},
note = {Data source: API Judilibre, \url{https://www.data.gouv.fr/en/datasets/api-judilibre/}}
}

This project relies on the Judilibre API par la Cour de Cassation, which is made available under the Open License 2.0 (Licence Ouverte 2.0)

It scans the API every 3 days at midnight UTC and exports its data in various formats to Hugging Face, without any fundamental transformation but conversions.

license ouverte / open license

v2024.09.13

13 Sep 07:19
Compare
Choose a tag to compare

Dataset on HF GitHub

✨ Jurisprudence, release v2024.09.13 🏛️

Jurisprudence is an open-source project that automates the collection and distribution of French legal decisions. It leverages the Judilibre API provided by the Cour de Cassation to:

  • Fetch rulings from major French courts (Cour de Cassation, Cour d'Appel, Tribunal Judiciaire)
  • Process and convert the data into easily accessible formats
  • Publish & version updated datasets on Hugging Face every few days.

It aims to democratize access to legal information, enabling researchers, legal professionals and the public to easily access and analyze French court decisions.
Whether you're conducting legal research, developing AI models, or simply interested in French jurisprudence, this project might provide a valuable, open resource for exploring the French legal landscape.

📊 Exported Data

Jurisdiction Jurisprudences Oldest Latest Tokens JSONL (gzipped) Parquet
Cour d'Appel 379,165 1996-03-25 2024-09-06 1,898,246,203 Download (1.66 GB) Download (2.77 GB)
Tribunal Judiciaire 63,158 2023-12-14 2024-09-05 225,810,711 Download (201.77 MB) Download (336.41 MB)
Cour de Cassation 534,299 1860-08-01 2024-09-12 1,103,728,127 Download (928.86 MB) Download (1.57 GB)
Total 976,622 1860-08-01 2024-09-12 3,227,785,041 2.77 GB 4.68 GB

Latest update date: 2024-09-13

# Tokens are computed using GPT-4 tiktoken and the text column.

🤗 Hugging Face Dataset

The up-to-date jurisprudences dataset is available at: https://huggingface.co/datasets/antoinejeannot/jurisprudence in JSONL (gzipped) and parquet formats.

This allows you to easily fetch, query, process and index all jurisprudences in the blink of an eye!

Usage Examples

HuggingFace Datasets

# pip install datasets
import datasets

dataset = load_dataset("antoinejeannot/jurisprudence")
dataset.shape
>> {'tribunal_judiciaire': (58986, 33),
'cour_d_appel': (378392, 33),
'cour_de_cassation': (534258, 33)}

# alternatively, you can load each jurisdiction separately
cour_d_appel = load_dataset("antoinejeannot/jurisprudence", "cour_d_appel")
tribunal_judiciaire = load_dataset("antoinejeannot/jurisprudence", "tribunal_judiciaire")
cour_de_cassation = load_dataset("antoinejeannot/jurisprudence", "cour_de_cassation") 

Leveraging datasets allows you to easily ingest data to PyTorch, Tensorflow, Jax etc.

BYOL: Bring Your Own Lib

For analysis, using polars, pandas or duckdb is quite common and also possible:

url = "https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_de_cassation.parquet"  # or tribunal_judiciaire.parquet, cour_d_appel.parquet

# pip install polars
import polars as pl
df = pl.scan_parquet(url)

# pip install pandas
import pandas as pd
df = pd.read_parquet(url)

# pip install duckdb
import duckdb
table = duckdb.read_parquet(url)

🪪 Citing & Authors

If you use this code in your research, please use the following BibTeX entry:

@misc{antoinejeannot2024,
author = {Jeannot Antoine and {Cour de Cassation}},
title = {Jurisprudence},
year = {2024},
howpublished = {\url{https://github.com/antoinejeannot/jurisprudence}},
note = {Data source: API Judilibre, \url{https://www.data.gouv.fr/en/datasets/api-judilibre/}}
}

This project relies on the Judilibre API par la Cour de Cassation, which is made available under the Open License 2.0 (Licence Ouverte 2.0)

It scans the API every 3 days at midnight UTC and exports its data in various formats to Hugging Face, without any fundamental transformation but conversions.

license ouverte / open license