Skip to content

Releases: antoinejeannot/jurisprudence

Release v2024.11.04

04 Nov 01:43
Compare
Choose a tag to compare

Dataset on HF GitHub

✨ Jurisprudence, release v2024.11.04 🏛️

Jurisprudence is an open-source project that automates the collection and distribution of French legal decisions. It leverages the Judilibre API provided by the Cour de Cassation to:

  • Fetch rulings from major French courts (Cour de Cassation, Cour d'Appel, Tribunal Judiciaire)
  • Process and convert the data into easily accessible formats
  • Publish & version updated datasets on Hugging Face every few days.

It aims to democratize access to legal information, enabling researchers, legal professionals and the public to easily access and analyze French court decisions.
Whether you're conducting legal research, developing AI models, or simply interested in French jurisprudence, this project might provide a valuable, open resource for exploring the French legal landscape.

📊 Exported Data

Jurisdiction Jurisprudences Oldest Latest Tokens JSONL (gzipped) Parquet
Cour d'Appel 398,207 1996-03-25 2024-10-29 1,989,416,125 Download (1.74 GB) Download (2.91 GB)
Tribunal Judiciaire 86,266 2023-12-14 2024-10-29 304,283,113 Download (275.60 MB) Download (456.91 MB)
Cour de Cassation 537,471 1860-08-01 2024-10-25 1,107,915,336 Download (932.26 MB) Download (1.58 GB)
Total 1,021,944 1860-08-01 2024-10-29 3,401,614,574 2.92 GB 4.93 GB

Latest update date: 2024-11-04

# Tokens are computed using GPT-4 tiktoken and the text column.

🤗 Hugging Face Dataset

The up-to-date jurisprudences dataset is available at: https://huggingface.co/datasets/antoinejeannot/jurisprudence in JSONL (gzipped) and parquet formats.

This allows you to easily fetch, query, process and index all jurisprudences in the blink of an eye!

Usage Examples

HuggingFace Datasets

# pip install datasets
import datasets

dataset = load_dataset("antoinejeannot/jurisprudence")
dataset.shape
>> {'tribunal_judiciaire': (58986, 33),
'cour_d_appel': (378392, 33),
'cour_de_cassation': (534258, 33)}

# alternatively, you can load each jurisdiction separately
cour_d_appel = load_dataset("antoinejeannot/jurisprudence", "cour_d_appel")
tribunal_judiciaire = load_dataset("antoinejeannot/jurisprudence", "tribunal_judiciaire")
cour_de_cassation = load_dataset("antoinejeannot/jurisprudence", "cour_de_cassation") 

Leveraging datasets allows you to easily ingest data to PyTorch, Tensorflow, Jax etc.

BYOL: Bring Your Own Lib

For analysis, using polars, pandas or duckdb is quite common and also possible:

url = "https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_de_cassation.parquet"  # or tribunal_judiciaire.parquet, cour_d_appel.parquet

# pip install polars
import polars as pl
df = pl.scan_parquet(url)

# pip install pandas
import pandas as pd
df = pd.read_parquet(url)

# pip install duckdb
import duckdb
table = duckdb.read_parquet(url)

🪪 Citing & Authors

If you use this code in your research, please use the following BibTeX entry:

@misc{antoinejeannot2024,
author = {Jeannot Antoine and {Cour de Cassation}},
title = {Jurisprudence},
year = {2024},
howpublished = {\url{https://github.com/antoinejeannot/jurisprudence}},
note = {Data source: API Judilibre, \url{https://www.data.gouv.fr/en/datasets/api-judilibre/}}
}

This project relies on the Judilibre API par la Cour de Cassation, which is made available under the Open License 2.0 (Licence Ouverte 2.0)

It scans the API every 3 days at midnight UTC and exports its data in various formats to Hugging Face, without any fundamental transformation but conversions.

license ouverte / open license

Release v2024.11.01

01 Nov 01:38
Compare
Choose a tag to compare

Dataset on HF GitHub

✨ Jurisprudence, release v2024.11.01 🏛️

Jurisprudence is an open-source project that automates the collection and distribution of French legal decisions. It leverages the Judilibre API provided by the Cour de Cassation to:

  • Fetch rulings from major French courts (Cour de Cassation, Cour d'Appel, Tribunal Judiciaire)
  • Process and convert the data into easily accessible formats
  • Publish & version updated datasets on Hugging Face every few days.

It aims to democratize access to legal information, enabling researchers, legal professionals and the public to easily access and analyze French court decisions.
Whether you're conducting legal research, developing AI models, or simply interested in French jurisprudence, this project might provide a valuable, open resource for exploring the French legal landscape.

📊 Exported Data

Jurisdiction Jurisprudences Oldest Latest Tokens JSONL (gzipped) Parquet
Cour d'Appel 397,375 1996-03-25 2024-10-25 1,986,916,597 Download (1.74 GB) Download (2.90 GB)
Tribunal Judiciaire 83,707 2023-12-14 2024-10-24 296,522,512 Download (268.34 MB) Download (445.03 MB)
Cour de Cassation 537,459 1860-08-01 2024-10-24 1,108,107,640 Download (932.46 MB) Download (1.58 GB)
Total 1,018,541 1860-08-01 2024-10-25 3,391,546,749 2.91 GB 4.92 GB

Latest update date: 2024-11-01

# Tokens are computed using GPT-4 tiktoken and the text column.

🤗 Hugging Face Dataset

The up-to-date jurisprudences dataset is available at: https://huggingface.co/datasets/antoinejeannot/jurisprudence in JSONL (gzipped) and parquet formats.

This allows you to easily fetch, query, process and index all jurisprudences in the blink of an eye!

Usage Examples

HuggingFace Datasets

# pip install datasets
import datasets

dataset = load_dataset("antoinejeannot/jurisprudence")
dataset.shape
>> {'tribunal_judiciaire': (58986, 33),
'cour_d_appel': (378392, 33),
'cour_de_cassation': (534258, 33)}

# alternatively, you can load each jurisdiction separately
cour_d_appel = load_dataset("antoinejeannot/jurisprudence", "cour_d_appel")
tribunal_judiciaire = load_dataset("antoinejeannot/jurisprudence", "tribunal_judiciaire")
cour_de_cassation = load_dataset("antoinejeannot/jurisprudence", "cour_de_cassation") 

Leveraging datasets allows you to easily ingest data to PyTorch, Tensorflow, Jax etc.

BYOL: Bring Your Own Lib

For analysis, using polars, pandas or duckdb is quite common and also possible:

url = "https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_de_cassation.parquet"  # or tribunal_judiciaire.parquet, cour_d_appel.parquet

# pip install polars
import polars as pl
df = pl.scan_parquet(url)

# pip install pandas
import pandas as pd
df = pd.read_parquet(url)

# pip install duckdb
import duckdb
table = duckdb.read_parquet(url)

🪪 Citing & Authors

If you use this code in your research, please use the following BibTeX entry:

@misc{antoinejeannot2024,
author = {Jeannot Antoine and {Cour de Cassation}},
title = {Jurisprudence},
year = {2024},
howpublished = {\url{https://github.com/antoinejeannot/jurisprudence}},
note = {Data source: API Judilibre, \url{https://www.data.gouv.fr/en/datasets/api-judilibre/}}
}

This project relies on the Judilibre API par la Cour de Cassation, which is made available under the Open License 2.0 (Licence Ouverte 2.0)

It scans the API every 3 days at midnight UTC and exports its data in various formats to Hugging Face, without any fundamental transformation but conversions.

license ouverte / open license

Release v2024.10.31

31 Oct 01:38
Compare
Choose a tag to compare

Dataset on HF GitHub

✨ Jurisprudence, release v2024.10.31 🏛️

Jurisprudence is an open-source project that automates the collection and distribution of French legal decisions. It leverages the Judilibre API provided by the Cour de Cassation to:

  • Fetch rulings from major French courts (Cour de Cassation, Cour d'Appel, Tribunal Judiciaire)
  • Process and convert the data into easily accessible formats
  • Publish & version updated datasets on Hugging Face every few days.

It aims to democratize access to legal information, enabling researchers, legal professionals and the public to easily access and analyze French court decisions.
Whether you're conducting legal research, developing AI models, or simply interested in French jurisprudence, this project might provide a valuable, open resource for exploring the French legal landscape.

📊 Exported Data

Jurisdiction Jurisprudences Oldest Latest Tokens JSONL (gzipped) Parquet
Cour d'Appel 396,740 1996-03-25 2024-10-23 1,984,138,490 Download (1.74 GB) Download (2.90 GB)
Tribunal Judiciaire 82,789 2023-12-14 2024-10-23 293,531,771 Download (265.58 MB) Download (440.51 MB)
Cour de Cassation 537,443 1860-08-01 2024-10-24 1,107,827,180 Download (932.18 MB) Download (1.58 GB)
Total 1,016,972 1860-08-01 2024-10-24 3,385,497,441 2.91 GB 4.91 GB

Latest update date: 2024-10-31

# Tokens are computed using GPT-4 tiktoken and the text column.

🤗 Hugging Face Dataset

The up-to-date jurisprudences dataset is available at: https://huggingface.co/datasets/antoinejeannot/jurisprudence in JSONL (gzipped) and parquet formats.

This allows you to easily fetch, query, process and index all jurisprudences in the blink of an eye!

Usage Examples

HuggingFace Datasets

# pip install datasets
import datasets

dataset = load_dataset("antoinejeannot/jurisprudence")
dataset.shape
>> {'tribunal_judiciaire': (58986, 33),
'cour_d_appel': (378392, 33),
'cour_de_cassation': (534258, 33)}

# alternatively, you can load each jurisdiction separately
cour_d_appel = load_dataset("antoinejeannot/jurisprudence", "cour_d_appel")
tribunal_judiciaire = load_dataset("antoinejeannot/jurisprudence", "tribunal_judiciaire")
cour_de_cassation = load_dataset("antoinejeannot/jurisprudence", "cour_de_cassation") 

Leveraging datasets allows you to easily ingest data to PyTorch, Tensorflow, Jax etc.

BYOL: Bring Your Own Lib

For analysis, using polars, pandas or duckdb is quite common and also possible:

url = "https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_de_cassation.parquet"  # or tribunal_judiciaire.parquet, cour_d_appel.parquet

# pip install polars
import polars as pl
df = pl.scan_parquet(url)

# pip install pandas
import pandas as pd
df = pd.read_parquet(url)

# pip install duckdb
import duckdb
table = duckdb.read_parquet(url)

🪪 Citing & Authors

If you use this code in your research, please use the following BibTeX entry:

@misc{antoinejeannot2024,
author = {Jeannot Antoine and {Cour de Cassation}},
title = {Jurisprudence},
year = {2024},
howpublished = {\url{https://github.com/antoinejeannot/jurisprudence}},
note = {Data source: API Judilibre, \url{https://www.data.gouv.fr/en/datasets/api-judilibre/}}
}

This project relies on the Judilibre API par la Cour de Cassation, which is made available under the Open License 2.0 (Licence Ouverte 2.0)

It scans the API every 3 days at midnight UTC and exports its data in various formats to Hugging Face, without any fundamental transformation but conversions.

license ouverte / open license

Release v2024.10.28

28 Oct 01:40
Compare
Choose a tag to compare

Dataset on HF GitHub

✨ Jurisprudence, release v2024.10.28 🏛️

Jurisprudence is an open-source project that automates the collection and distribution of French legal decisions. It leverages the Judilibre API provided by the Cour de Cassation to:

  • Fetch rulings from major French courts (Cour de Cassation, Cour d'Appel, Tribunal Judiciaire)
  • Process and convert the data into easily accessible formats
  • Publish & version updated datasets on Hugging Face every few days.

It aims to democratize access to legal information, enabling researchers, legal professionals and the public to easily access and analyze French court decisions.
Whether you're conducting legal research, developing AI models, or simply interested in French jurisprudence, this project might provide a valuable, open resource for exploring the French legal landscape.

📊 Exported Data

Jurisdiction Jurisprudences Oldest Latest Tokens JSONL (gzipped) Parquet
Cour d'Appel 396,317 1996-03-25 2024-10-22 1,981,675,335 Download (1.74 GB) Download (2.90 GB)
Tribunal Judiciaire 82,085 2023-12-14 2024-10-22 291,028,506 Download (263.20 MB) Download (436.65 MB)
Cour de Cassation 537,252 1860-08-01 2024-10-24 1,107,801,271 Download (932.25 MB) Download (1.58 GB)
Total 1,015,654 1860-08-01 2024-10-24 3,380,505,112 2.90 GB 4.90 GB

Latest update date: 2024-10-28

# Tokens are computed using GPT-4 tiktoken and the text column.

🤗 Hugging Face Dataset

The up-to-date jurisprudences dataset is available at: https://huggingface.co/datasets/antoinejeannot/jurisprudence in JSONL (gzipped) and parquet formats.

This allows you to easily fetch, query, process and index all jurisprudences in the blink of an eye!

Usage Examples

HuggingFace Datasets

# pip install datasets
import datasets

dataset = load_dataset("antoinejeannot/jurisprudence")
dataset.shape
>> {'tribunal_judiciaire': (58986, 33),
'cour_d_appel': (378392, 33),
'cour_de_cassation': (534258, 33)}

# alternatively, you can load each jurisdiction separately
cour_d_appel = load_dataset("antoinejeannot/jurisprudence", "cour_d_appel")
tribunal_judiciaire = load_dataset("antoinejeannot/jurisprudence", "tribunal_judiciaire")
cour_de_cassation = load_dataset("antoinejeannot/jurisprudence", "cour_de_cassation") 

Leveraging datasets allows you to easily ingest data to PyTorch, Tensorflow, Jax etc.

BYOL: Bring Your Own Lib

For analysis, using polars, pandas or duckdb is quite common and also possible:

url = "https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_de_cassation.parquet"  # or tribunal_judiciaire.parquet, cour_d_appel.parquet

# pip install polars
import polars as pl
df = pl.scan_parquet(url)

# pip install pandas
import pandas as pd
df = pd.read_parquet(url)

# pip install duckdb
import duckdb
table = duckdb.read_parquet(url)

🪪 Citing & Authors

If you use this code in your research, please use the following BibTeX entry:

@misc{antoinejeannot2024,
author = {Jeannot Antoine and {Cour de Cassation}},
title = {Jurisprudence},
year = {2024},
howpublished = {\url{https://github.com/antoinejeannot/jurisprudence}},
note = {Data source: API Judilibre, \url{https://www.data.gouv.fr/en/datasets/api-judilibre/}}
}

This project relies on the Judilibre API par la Cour de Cassation, which is made available under the Open License 2.0 (Licence Ouverte 2.0)

It scans the API every 3 days at midnight UTC and exports its data in various formats to Hugging Face, without any fundamental transformation but conversions.

license ouverte / open license

Release v2024.10.25

25 Oct 01:39
Compare
Choose a tag to compare

Dataset on HF GitHub

✨ Jurisprudence, release v2024.10.25 🏛️

Jurisprudence is an open-source project that automates the collection and distribution of French legal decisions. It leverages the Judilibre API provided by the Cour de Cassation to:

  • Fetch rulings from major French courts (Cour de Cassation, Cour d'Appel, Tribunal Judiciaire)
  • Process and convert the data into easily accessible formats
  • Publish & version updated datasets on Hugging Face every few days.

It aims to democratize access to legal information, enabling researchers, legal professionals and the public to easily access and analyze French court decisions.
Whether you're conducting legal research, developing AI models, or simply interested in French jurisprudence, this project might provide a valuable, open resource for exploring the French legal landscape.

📊 Exported Data

Jurisdiction Jurisprudences Oldest Latest Tokens JSONL (gzipped) Parquet
Cour d'Appel 395,224 1996-03-25 2024-10-18 1,977,104,348 Download (1.73 GB) Download (2.89 GB)
Tribunal Judiciaire 79,721 2023-12-14 2024-10-17 283,788,133 Download (256.39 MB) Download (425.64 MB)
Cour de Cassation 537,065 1860-08-01 2024-10-24 1,107,898,877 Download (932.22 MB) Download (1.58 GB)
Total 1,012,010 1860-08-01 2024-10-24 3,368,791,358 2.89 GB 4.88 GB

Latest update date: 2024-10-25

# Tokens are computed using GPT-4 tiktoken and the text column.

🤗 Hugging Face Dataset

The up-to-date jurisprudences dataset is available at: https://huggingface.co/datasets/antoinejeannot/jurisprudence in JSONL (gzipped) and parquet formats.

This allows you to easily fetch, query, process and index all jurisprudences in the blink of an eye!

Usage Examples

HuggingFace Datasets

# pip install datasets
import datasets

dataset = load_dataset("antoinejeannot/jurisprudence")
dataset.shape
>> {'tribunal_judiciaire': (58986, 33),
'cour_d_appel': (378392, 33),
'cour_de_cassation': (534258, 33)}

# alternatively, you can load each jurisdiction separately
cour_d_appel = load_dataset("antoinejeannot/jurisprudence", "cour_d_appel")
tribunal_judiciaire = load_dataset("antoinejeannot/jurisprudence", "tribunal_judiciaire")
cour_de_cassation = load_dataset("antoinejeannot/jurisprudence", "cour_de_cassation") 

Leveraging datasets allows you to easily ingest data to PyTorch, Tensorflow, Jax etc.

BYOL: Bring Your Own Lib

For analysis, using polars, pandas or duckdb is quite common and also possible:

url = "https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_de_cassation.parquet"  # or tribunal_judiciaire.parquet, cour_d_appel.parquet

# pip install polars
import polars as pl
df = pl.scan_parquet(url)

# pip install pandas
import pandas as pd
df = pd.read_parquet(url)

# pip install duckdb
import duckdb
table = duckdb.read_parquet(url)

🪪 Citing & Authors

If you use this code in your research, please use the following BibTeX entry:

@misc{antoinejeannot2024,
author = {Jeannot Antoine and {Cour de Cassation}},
title = {Jurisprudence},
year = {2024},
howpublished = {\url{https://github.com/antoinejeannot/jurisprudence}},
note = {Data source: API Judilibre, \url{https://www.data.gouv.fr/en/datasets/api-judilibre/}}
}

This project relies on the Judilibre API par la Cour de Cassation, which is made available under the Open License 2.0 (Licence Ouverte 2.0)

It scans the API every 3 days at midnight UTC and exports its data in various formats to Hugging Face, without any fundamental transformation but conversions.

license ouverte / open license

Release v2024.10.22

22 Oct 01:38
Compare
Choose a tag to compare

Dataset on HF GitHub

✨ Jurisprudence, release v2024.10.22 🏛️

Jurisprudence is an open-source project that automates the collection and distribution of French legal decisions. It leverages the Judilibre API provided by the Cour de Cassation to:

  • Fetch rulings from major French courts (Cour de Cassation, Cour d'Appel, Tribunal Judiciaire)
  • Process and convert the data into easily accessible formats
  • Publish & version updated datasets on Hugging Face every few days.

It aims to democratize access to legal information, enabling researchers, legal professionals and the public to easily access and analyze French court decisions.
Whether you're conducting legal research, developing AI models, or simply interested in French jurisprudence, this project might provide a valuable, open resource for exploring the French legal landscape.

📊 Exported Data

Jurisdiction Jurisprudences Oldest Latest Tokens JSONL (gzipped) Parquet
Cour d'Appel 394,430 1996-03-25 2024-10-17 1,973,704,478 Download (1.73 GB) Download (2.88 GB)
Tribunal Judiciaire 79,188 2023-12-14 2024-10-17 282,055,094 Download (254.85 MB) Download (422.93 MB)
Cour de Cassation 537,000 1860-08-01 2024-10-17 1,107,418,242 Download (931.99 MB) Download (1.58 GB)
Total 1,010,618 1860-08-01 2024-10-17 3,363,177,814 2.89 GB 4.88 GB

Latest update date: 2024-10-22

# Tokens are computed using GPT-4 tiktoken and the text column.

🤗 Hugging Face Dataset

The up-to-date jurisprudences dataset is available at: https://huggingface.co/datasets/antoinejeannot/jurisprudence in JSONL (gzipped) and parquet formats.

This allows you to easily fetch, query, process and index all jurisprudences in the blink of an eye!

Usage Examples

HuggingFace Datasets

# pip install datasets
import datasets

dataset = load_dataset("antoinejeannot/jurisprudence")
dataset.shape
>> {'tribunal_judiciaire': (58986, 33),
'cour_d_appel': (378392, 33),
'cour_de_cassation': (534258, 33)}

# alternatively, you can load each jurisdiction separately
cour_d_appel = load_dataset("antoinejeannot/jurisprudence", "cour_d_appel")
tribunal_judiciaire = load_dataset("antoinejeannot/jurisprudence", "tribunal_judiciaire")
cour_de_cassation = load_dataset("antoinejeannot/jurisprudence", "cour_de_cassation") 

Leveraging datasets allows you to easily ingest data to PyTorch, Tensorflow, Jax etc.

BYOL: Bring Your Own Lib

For analysis, using polars, pandas or duckdb is quite common and also possible:

url = "https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_de_cassation.parquet"  # or tribunal_judiciaire.parquet, cour_d_appel.parquet

# pip install polars
import polars as pl
df = pl.scan_parquet(url)

# pip install pandas
import pandas as pd
df = pd.read_parquet(url)

# pip install duckdb
import duckdb
table = duckdb.read_parquet(url)

🪪 Citing & Authors

If you use this code in your research, please use the following BibTeX entry:

@misc{antoinejeannot2024,
author = {Jeannot Antoine and {Cour de Cassation}},
title = {Jurisprudence},
year = {2024},
howpublished = {\url{https://github.com/antoinejeannot/jurisprudence}},
note = {Data source: API Judilibre, \url{https://www.data.gouv.fr/en/datasets/api-judilibre/}}
}

This project relies on the Judilibre API par la Cour de Cassation, which is made available under the Open License 2.0 (Licence Ouverte 2.0)

It scans the API every 3 days at midnight UTC and exports its data in various formats to Hugging Face, without any fundamental transformation but conversions.

license ouverte / open license

Release v2024.10.20

20 Oct 07:25
ce334e6
Compare
Choose a tag to compare

Dataset on HF GitHub

✨ Jurisprudence, release v2024.10.20 🏛️

Jurisprudence is an open-source project that automates the collection and distribution of French legal decisions. It leverages the Judilibre API provided by the Cour de Cassation to:

  • Fetch rulings from major French courts (Cour de Cassation, Cour d'Appel, Tribunal Judiciaire)
  • Process and convert the data into easily accessible formats
  • Publish & version updated datasets on Hugging Face every few days.

It aims to democratize access to legal information, enabling researchers, legal professionals and the public to easily access and analyze French court decisions.
Whether you're conducting legal research, developing AI models, or simply interested in French jurisprudence, this project might provide a valuable, open resource for exploring the French legal landscape.

📊 Exported Data

Jurisdiction Jurisprudences Oldest Latest Tokens JSONL (gzipped) Parquet
Cour d'Appel 393,528 1996-03-25 2024-10-17 1,969,498,268 Download (1.72 GB) Download (2.88 GB)
Tribunal Judiciaire 78,227 2023-12-14 2024-10-14 278,779,170 Download (251.72 MB) Download (417.80 MB)
Cour de Cassation 536,698 1860-08-01 2024-10-17 1,107,052,096 Download (931.72 MB) Download (1.58 GB)
Total 1,008,453 1860-08-01 2024-10-17 3,355,329,534 2.88 GB 4.86 GB

Latest update date: 2024-10-20

# Tokens are computed using GPT-4 tiktoken and the text column.

🤗 Hugging Face Dataset

The up-to-date jurisprudences dataset is available at: https://huggingface.co/datasets/antoinejeannot/jurisprudence in JSONL (gzipped) and parquet formats.

This allows you to easily fetch, query, process and index all jurisprudences in the blink of an eye!

Usage Examples

HuggingFace Datasets

# pip install datasets
import datasets

dataset = load_dataset("antoinejeannot/jurisprudence")
dataset.shape
>> {'tribunal_judiciaire': (58986, 33),
'cour_d_appel': (378392, 33),
'cour_de_cassation': (534258, 33)}

# alternatively, you can load each jurisdiction separately
cour_d_appel = load_dataset("antoinejeannot/jurisprudence", "cour_d_appel")
tribunal_judiciaire = load_dataset("antoinejeannot/jurisprudence", "tribunal_judiciaire")
cour_de_cassation = load_dataset("antoinejeannot/jurisprudence", "cour_de_cassation") 

Leveraging datasets allows you to easily ingest data to PyTorch, Tensorflow, Jax etc.

BYOL: Bring Your Own Lib

For analysis, using polars, pandas or duckdb is quite common and also possible:

url = "https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_de_cassation.parquet"  # or tribunal_judiciaire.parquet, cour_d_appel.parquet

# pip install polars
import polars as pl
df = pl.scan_parquet(url)

# pip install pandas
import pandas as pd
df = pd.read_parquet(url)

# pip install duckdb
import duckdb
table = duckdb.read_parquet(url)

🪪 Citing & Authors

If you use this code in your research, please use the following BibTeX entry:

@misc{antoinejeannot2024,
author = {Jeannot Antoine and {Cour de Cassation}},
title = {Jurisprudence},
year = {2024},
howpublished = {\url{https://github.com/antoinejeannot/jurisprudence}},
note = {Data source: API Judilibre, \url{https://www.data.gouv.fr/en/datasets/api-judilibre/}}
}

This project relies on the Judilibre API par la Cour de Cassation, which is made available under the Open License 2.0 (Licence Ouverte 2.0)

It scans the API every 3 days at midnight UTC and exports its data in various formats to Hugging Face, without any fundamental transformation but conversions.

license ouverte / open license

Release v2024.10.16

16 Oct 01:56
Compare
Choose a tag to compare

Dataset on HF GitHub

✨ Jurisprudence, release v2024.10.16 🏛️

Jurisprudence is an open-source project that automates the collection and distribution of French legal decisions. It leverages the Judilibre API provided by the Cour de Cassation to:

  • Fetch rulings from major French courts (Cour de Cassation, Cour d'Appel, Tribunal Judiciaire)
  • Process and convert the data into easily accessible formats
  • Publish & version updated datasets on Hugging Face every few days.

It aims to democratize access to legal information, enabling researchers, legal professionals and the public to easily access and analyze French court decisions.
Whether you're conducting legal research, developing AI models, or simply interested in French jurisprudence, this project might provide a valuable, open resource for exploring the French legal landscape.

📊 Exported Data

Jurisdiction Jurisprudences Oldest Latest Tokens JSONL (gzipped) Parquet
Cour d'Appel 393,027 1996-03-25 2024-10-10 1,966,344,301 Download (1.72 GB) Download (2.87 GB)
Tribunal Judiciaire 77,347 2023-12-14 2024-10-10 275,740,841 Download (248.46 MB) Download (413.09 MB)
Cour de Cassation 536,658 1860-08-01 2024-10-15 1,106,970,947 Download (931.31 MB) Download (1.58 GB)
Total 1,007,032 1860-08-01 2024-10-15 3,349,056,089 2.87 GB 4.86 GB

Latest update date: 2024-10-16

# Tokens are computed using GPT-4 tiktoken and the text column.

🤗 Hugging Face Dataset

The up-to-date jurisprudences dataset is available at: https://huggingface.co/datasets/antoinejeannot/jurisprudence in JSONL (gzipped) and parquet formats.

This allows you to easily fetch, query, process and index all jurisprudences in the blink of an eye!

Usage Examples

HuggingFace Datasets

# pip install datasets
import datasets

dataset = load_dataset("antoinejeannot/jurisprudence")
dataset.shape
>> {'tribunal_judiciaire': (58986, 33),
'cour_d_appel': (378392, 33),
'cour_de_cassation': (534258, 33)}

# alternatively, you can load each jurisdiction separately
cour_d_appel = load_dataset("antoinejeannot/jurisprudence", "cour_d_appel")
tribunal_judiciaire = load_dataset("antoinejeannot/jurisprudence", "tribunal_judiciaire")
cour_de_cassation = load_dataset("antoinejeannot/jurisprudence", "cour_de_cassation") 

Leveraging datasets allows you to easily ingest data to PyTorch, Tensorflow, Jax etc.

BYOL: Bring Your Own Lib

For analysis, using polars, pandas or duckdb is quite common and also possible:

url = "https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_de_cassation.parquet"  # or tribunal_judiciaire.parquet, cour_d_appel.parquet

# pip install polars
import polars as pl
df = pl.scan_parquet(url)

# pip install pandas
import pandas as pd
df = pd.read_parquet(url)

# pip install duckdb
import duckdb
table = duckdb.read_parquet(url)

🪪 Citing & Authors

If you use this code in your research, please use the following BibTeX entry:

@misc{antoinejeannot2024,
author = {Jeannot Antoine and {Cour de Cassation}},
title = {Jurisprudence},
year = {2024},
howpublished = {\url{https://github.com/antoinejeannot/jurisprudence}},
note = {Data source: API Judilibre, \url{https://www.data.gouv.fr/en/datasets/api-judilibre/}}
}

This project relies on the Judilibre API par la Cour de Cassation, which is made available under the Open License 2.0 (Licence Ouverte 2.0)

It scans the API every 3 days at midnight UTC and exports its data in various formats to Hugging Face, without any fundamental transformation but conversions.

license ouverte / open license

Release v2024.10.13

13 Oct 01:42
Compare
Choose a tag to compare

Dataset on HF GitHub

✨ Jurisprudence, release v2024.10.13 🏛️

Jurisprudence is an open-source project that automates the collection and distribution of French legal decisions. It leverages the Judilibre API provided by the Cour de Cassation to:

  • Fetch rulings from major French courts (Cour de Cassation, Cour d'Appel, Tribunal Judiciaire)
  • Process and convert the data into easily accessible formats
  • Publish & version updated datasets on Hugging Face every few days.

It aims to democratize access to legal information, enabling researchers, legal professionals and the public to easily access and analyze French court decisions.
Whether you're conducting legal research, developing AI models, or simply interested in French jurisprudence, this project might provide a valuable, open resource for exploring the French legal landscape.

📊 Exported Data

Jurisdiction Jurisprudences Oldest Latest Tokens JSONL (gzipped) Parquet
Cour d'Appel 390,728 1996-03-25 2024-10-04 1,956,320,692 Download (1.71 GB) Download (2.86 GB)
Tribunal Judiciaire 74,122 2023-12-14 2024-10-03 265,161,253 Download (238.36 MB) Download (396.80 MB)
Cour de Cassation 536,133 1860-08-01 2024-10-10 1,106,143,102 Download (930.69 MB) Download (1.58 GB)
Total 1,000,983 1860-08-01 2024-10-10 3,327,625,047 2.85 GB 4.82 GB

Latest update date: 2024-10-13

# Tokens are computed using GPT-4 tiktoken and the text column.

🤗 Hugging Face Dataset

The up-to-date jurisprudences dataset is available at: https://huggingface.co/datasets/antoinejeannot/jurisprudence in JSONL (gzipped) and parquet formats.

This allows you to easily fetch, query, process and index all jurisprudences in the blink of an eye!

Usage Examples

HuggingFace Datasets

# pip install datasets
import datasets

dataset = load_dataset("antoinejeannot/jurisprudence")
dataset.shape
>> {'tribunal_judiciaire': (58986, 33),
'cour_d_appel': (378392, 33),
'cour_de_cassation': (534258, 33)}

# alternatively, you can load each jurisdiction separately
cour_d_appel = load_dataset("antoinejeannot/jurisprudence", "cour_d_appel")
tribunal_judiciaire = load_dataset("antoinejeannot/jurisprudence", "tribunal_judiciaire")
cour_de_cassation = load_dataset("antoinejeannot/jurisprudence", "cour_de_cassation") 

Leveraging datasets allows you to easily ingest data to PyTorch, Tensorflow, Jax etc.

BYOL: Bring Your Own Lib

For analysis, using polars, pandas or duckdb is quite common and also possible:

url = "https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_de_cassation.parquet"  # or tribunal_judiciaire.parquet, cour_d_appel.parquet

# pip install polars
import polars as pl
df = pl.scan_parquet(url)

# pip install pandas
import pandas as pd
df = pd.read_parquet(url)

# pip install duckdb
import duckdb
table = duckdb.read_parquet(url)

🪪 Citing & Authors

If you use this code in your research, please use the following BibTeX entry:

@misc{antoinejeannot2024,
author = {Jeannot Antoine and {Cour de Cassation}},
title = {Jurisprudence},
year = {2024},
howpublished = {\url{https://github.com/antoinejeannot/jurisprudence}},
note = {Data source: API Judilibre, \url{https://www.data.gouv.fr/en/datasets/api-judilibre/}}
}

This project relies on the Judilibre API par la Cour de Cassation, which is made available under the Open License 2.0 (Licence Ouverte 2.0)

It scans the API every 3 days at midnight UTC and exports its data in various formats to Hugging Face, without any fundamental transformation but conversions.

license ouverte / open license

Release v2024.10.10

10 Oct 01:38
Compare
Choose a tag to compare

Dataset on HF GitHub

✨ Jurisprudence, release v2024.10.10 🏛️

Jurisprudence is an open-source project that automates the collection and distribution of French legal decisions. It leverages the Judilibre API provided by the Cour de Cassation to:

  • Fetch rulings from major French courts (Cour de Cassation, Cour d'Appel, Tribunal Judiciaire)
  • Process and convert the data into easily accessible formats
  • Publish & version updated datasets on Hugging Face every few days.

It aims to democratize access to legal information, enabling researchers, legal professionals and the public to easily access and analyze French court decisions.
Whether you're conducting legal research, developing AI models, or simply interested in French jurisprudence, this project might provide a valuable, open resource for exploring the French legal landscape.

📊 Exported Data

Jurisdiction Jurisprudences Oldest Latest Tokens JSONL (gzipped) Parquet
Cour d'Appel 390,728 1996-03-25 2024-10-04 1,956,701,958 Download (1.71 GB) Download (2.86 GB)
Tribunal Judiciaire 74,122 2023-12-14 2024-10-03 265,119,072 Download (238.30 MB) Download (396.52 MB)
Cour de Cassation 536,114 1860-08-01 2024-10-09 1,106,395,288 Download (930.84 MB) Download (1.58 GB)
Total 1,000,964 1860-08-01 2024-10-09 3,328,216,318 2.85 GB 4.82 GB

Latest update date: 2024-10-10

# Tokens are computed using GPT-4 tiktoken and the text column.

🤗 Hugging Face Dataset

The up-to-date jurisprudences dataset is available at: https://huggingface.co/datasets/antoinejeannot/jurisprudence in JSONL (gzipped) and parquet formats.

This allows you to easily fetch, query, process and index all jurisprudences in the blink of an eye!

Usage Examples

HuggingFace Datasets

# pip install datasets
import datasets

dataset = load_dataset("antoinejeannot/jurisprudence")
dataset.shape
>> {'tribunal_judiciaire': (58986, 33),
'cour_d_appel': (378392, 33),
'cour_de_cassation': (534258, 33)}

# alternatively, you can load each jurisdiction separately
cour_d_appel = load_dataset("antoinejeannot/jurisprudence", "cour_d_appel")
tribunal_judiciaire = load_dataset("antoinejeannot/jurisprudence", "tribunal_judiciaire")
cour_de_cassation = load_dataset("antoinejeannot/jurisprudence", "cour_de_cassation") 

Leveraging datasets allows you to easily ingest data to PyTorch, Tensorflow, Jax etc.

BYOL: Bring Your Own Lib

For analysis, using polars, pandas or duckdb is quite common and also possible:

url = "https://huggingface.co/datasets/antoinejeannot/jurisprudence/resolve/main/cour_de_cassation.parquet"  # or tribunal_judiciaire.parquet, cour_d_appel.parquet

# pip install polars
import polars as pl
df = pl.scan_parquet(url)

# pip install pandas
import pandas as pd
df = pd.read_parquet(url)

# pip install duckdb
import duckdb
table = duckdb.read_parquet(url)

🪪 Citing & Authors

If you use this code in your research, please use the following BibTeX entry:

@misc{antoinejeannot2024,
author = {Jeannot Antoine and {Cour de Cassation}},
title = {Jurisprudence},
year = {2024},
howpublished = {\url{https://github.com/antoinejeannot/jurisprudence}},
note = {Data source: API Judilibre, \url{https://www.data.gouv.fr/en/datasets/api-judilibre/}}
}

This project relies on the Judilibre API par la Cour de Cassation, which is made available under the Open License 2.0 (Licence Ouverte 2.0)

It scans the API every 3 days at midnight UTC and exports its data in various formats to Hugging Face, without any fundamental transformation but conversions.

license ouverte / open license