-
Notifications
You must be signed in to change notification settings - Fork 3
Home
Welcome to the official documentation for PilottAI, a Python framework designed for building scalable multi-agent systems. This wiki provides comprehensive guidance for developers creating intelligent, autonomous applications.
- Introduction
- Getting Started
- Core Components
- Advanced Usage
- Best Practices
- API Reference
- Contributing
- Troubleshooting
- Roadmap
PilottAI is a modern Python framework for building hierarchical multi-agent systems. It provides developers with tools and infrastructure to create autonomous agents that collaborate on complex tasks.
-
Agent System
- Hierarchical agent architecture
- Task orchestration
- Flexible communication
- Memory management
- Context preservation
-
Performance & Reliability
- Asynchronous processing
- Dynamic scaling
- Load balancing
- Fault tolerance
- Comprehensive logging
-
Integration & Tools
- LLM provider support
- Extensible tool system
- Document processing
- WebSocket support
pip install pilott
from pilott import Serve
from pilott.core import AgentConfig, AgentRole
config = AgentConfig(
role="processor",
role_type=AgentRole.WORKER,
goal="Process tasks efficiently",
description="Worker agent"
)
pilott = Serve(
name="MySystem",
verbose=True
)
async def main():
await pilott.start()
agent = await pilott.add_agent(
agent_type="processor",
config=config
)
result = await pilott.execute_task({
"type": "process",
"data": {"key": "value"}
})
The foundation of PilottAI's agent architecture:
from pilott.core import BaseAgent
class CustomAgent(BaseAgent):
async def execute_task(self, task):
# Custom task execution logic
pass
- Orchestrator: Manages task distribution and coordination
- Worker: Executes specific tasks
- Hybrid: Combines orchestration and worker capabilities
PilottAI includes an intelligent task router that distributes tasks based on:
- Agent capabilities
- Current load
- Task priority
- Resource availability
load_balancer = LoadBalancer(
check_interval=30,
overload_threshold=0.8,
underload_threshold=0.2
)
from pilott.tools import Tool
class CustomTool(Tool):
def execute(self, **kwargs):
# Tool implementation
pass
await agent.send_message(
recipient_id="agent2",
message={"type": "update", "data": data}
)
scaling_config = ScalingConfig(
scale_up_threshold=0.8,
scale_down_threshold=0.3,
min_agents=2,
max_agents=10
)
-
Task Design
- Create atomic tasks
- Define clear success criteria
- Implement error handling
-
Resource Management
- Monitor agent health
- Use circuit breakers
- Set appropriate timeouts
-
State Management
- Use memory efficiently
- Implement cleanup
- Handle edge cases
-
Authentication
- Implement proper authentication
- Use secure connections
- Validate inputs
-
Data Protection
- Encrypt sensitive data
- Implement access controls
- Conduct regular security audits
class Serve:
async def start(self):
"""Start the system"""
pass
async def add_agent(self, agent_type: str, config: AgentConfig):
"""Add new agent"""
pass
async def execute_task(self, task: dict):
"""Execute task"""
pass
class AgentConfig:
role: str
role_type: AgentRole
goal: str
description: str
memory_enabled: bool = True
verbose: bool = False
- Clone repository
- Install dependencies
- Set up development environment
- Run tests
- Fork repository
- Create feature branch
- Implement changes
- Add tests
- Submit PR
- Follow PEP 8
- Use type hints
- Write documentation
- Include tests
-
Task Processing
- Issue: Tasks not being processed
- Solution: Check agent status and queue size
-
Memory Usage
- Issue: High memory usage
- Solution: Implement cleanup and optimize storage
-
Performance
- Issue: Slow task processing
- Solution: Adjust load balancing and scaling thresholds
- GitHub Issues
- Discord Community
- Email Support
- Stack Overflow Tag
- Core functionality
- Basic agent system
- Task processing
- Memory management
Short Term:
- Enhanced monitoring
- Additional LLM providers
- Improved documentation
Long Term:
- Advanced orchestration
- ML-based optimization
- Custom DSL for configuration
Last updated: January 2025