This guide provides three tutorials on how to add OpenTelemetry tracing for a Ray Serve applications in an Anyscale Service. The first tutorial provides a quick start on how to collect Ray Serve traces and view them in the Ray logs. The second tutorial provides a more in-depth example on how to instrument your application. The third details how to export traces to a tracing backend.
Note that by default, each request handled by the Serve application exports a trace that provides observability of the full span of the request.
Set the tracing_config
in the service config.
name: default-tracing-service
working_dir: https://github.com/anyscale/tracing-example/archive/6601ecdd76dcc4b1b93b81d93db61d1d969d91bb.zip
image_uri: anyscale/ray:2.34.0-slim-py310
requirements:
- opentelemetry-api==1.26.0
- opentelemetry-sdk==1.26.0
- opentelemetry-exporter-otlp==1.26.0
- opentelemetry-exporter-otlp-proto-grpc==1.26.0
- opentelemetry-instrumentation==0.47b0
- opentelemetry-instrumentation-asgi==0.47b0
- opentelemetry-instrumentation-fastapi==0.47b0
applications:
- route_prefix: '/'
import_path: default_serve_hello:app
runtime_env: {}
tracing_config:
enabled: True
sampling_ratio: 1.0
Deploy the service using the following command.
anyscale service deploy -f default_tracing_service.yaml
After querying your application, traces will be exported to the /tmp/ray/session_latest/logs/serve/spans/
folder on instances with active replicas.
{
"name": "proxy_http_request",
"context": {
"trace_id": "0x88aef1ad547167b44a15479f57a6383e",
"span_id": "0x59989b70393625e3",
"trace_state": "[]"
},
"kind": "SpanKind.SERVER",
"parent_id": null,
"start_time": "2024-05-28T18:05:04.864137Z",
"end_time": "2024-05-28T18:05:04.891003Z",
"status": {
"status_code": "OK"
},
"attributes": {
"request_id": "cf86e040-2c53-44b8-976e-55224b692141",
"deployment": "HelloWorld",
"app": "default",
"request_type": "http",
"request_method": "GET",
"request_route_path": "/"
},
"events": [],
"links": [],
"resource": {
"attributes": {
"telemetry.sdk.language": "python",
"telemetry.sdk.name": "opentelemetry",
"telemetry.sdk.version": "1.24.0",
"service.name": "unknown_service"
},
"schema_url": ""
}
}
This tutorial provides guidance on how to instrument a Serve application with custom tracing and third party OpenTelemetry compatible instrumentors.
The first step is augmenting the Serve application with OpenTelemetry traces and the FastAPIInstrumentor.
:::note
We import FastAPIInstrumentor
from here to bypass an incompatibility issue with Ray Serve.
:::
from fastapi import FastAPI
from opentelemetry import trace
from opentelemetry.trace.status import Status, StatusCode
from ray import serve
from typing import Optional, Dict
from fp import FastAPIInstrumentor
def get_serve_trace_context() -> Optional[Dict[str, str]]:
"""
Retrieve the tracing context for the Ray Serve application if running within Anyscale.
This function attempts to import and call the `get_trace_context` function from the
`ray.anyscale.serve.utils` module, which is only available when you deploy the app
within Anyscale. If the import fails (i.e., the app is not running
within Anyscale), the function returns an empty dictionary.
Returns:
dict: The trace context if running within Anyscale; otherwise, an empty dictionary.
"""
try:
from ray.anyscale.serve.utils import get_trace_context
return get_trace_context()
except ImportError:
return {} # Not running in Anyscale.
app = FastAPI()
FastAPIInstrumentor().instrument_app(app)
@serve.deployment
@serve.ingress(app)
class HelloWorld:
@app.get("/")
def hello(self):
# Create a new span that is associated with the current trace
tracer = trace.get_tracer(__name__)
with tracer.start_as_current_span(
"application_span", context=get_serve_trace_context()
) as span:
replica_context = serve.get_replica_context()
# Update the span attributes and status
attributes = {
"deployment": replica_context.deployment,
"replica_id": replica_context.replica_id.unique_id
}
span.set_attributes(attributes)
span.set_status(
Status(status_code=StatusCode.OK)
)
# Return message
return "Hello world!"
app = HelloWorld.bind()
Next, define the service configuration with a service YAML.
name: tracing-service
working_dir: https://github.com/anyscale/tracing-example/archive/6601ecdd76dcc4b1b93b81d93db61d1d969d91bb.zip
image_uri: anyscale/ray:2.34.0-slim-py310
requirements:
- opentelemetry-api==1.26.0
- opentelemetry-sdk==1.26.0
- opentelemetry-exporter-otlp==1.26.0
- opentelemetry-exporter-otlp-proto-grpc==1.26.0
- opentelemetry-instrumentation==0.47b0
- opentelemetry-instrumentation-asgi==0.47b0
- opentelemetry-instrumentation-fastapi==0.47b0
applications:
- name: my_app
route_prefix: '/'
import_path: serve_hello:app
runtime_env: {}
tracing_config:
enabled: True
sampling_ratio: 1.0
To deploy the service, we can run the following command.
anyscale service deploy -f tracing_service.yaml
After querying your application, traces will be exported to the /tmp/ray/session_latest/logs/serve/spans/
folder on instances with active replicas.
{
"name": "application_span",
"context": {
"trace_id": "0xff1e005576c03988af36a72bb53af9b0",
"span_id": "0xadf6ad79766eb568",
"trace_state": "[]"
},
"kind": "SpanKind.INTERNAL",
"parent_id": "0xdf94f8c2dbf8f6ff",
"start_time": "2024-06-04T20:52:12.558024Z",
"end_time": "2024-06-04T20:52:12.558047Z",
"status": {
"status_code": "OK"
},
"attributes": {
"deployment": "HelloWorld",
"replica_id": "7u8nq1c3"
},
"events": [],
"links": [],
"resource": {
"attributes": {
"telemetry.sdk.language": "python",
"telemetry.sdk.name": "opentelemetry",
"telemetry.sdk.version": "1.24.0",
"service.name": "unknown_service"
},
"schema_url": ""
}
}
{
"name": "GET / http send",
"context": {
"trace_id": "0xd02e60adebf4010d29f7057b373224f9",
"span_id": "0x13dec7bea39c7d48",
"trace_state": "[]"
},
"kind": "SpanKind.INTERNAL",
"parent_id": "0x288b70e107316859",
"start_time": "2024-06-04T20:52:12.558452Z",
"end_time": "2024-06-04T20:52:12.558489Z",
"status": {
"status_code": "UNSET"
},
"attributes": {
"http.status_code": 200,
"type": "http.response.start"
},
"events": [],
"links": [],
"resource": {
"attributes": {
"telemetry.sdk.language": "python",
"telemetry.sdk.name": "opentelemetry",
"telemetry.sdk.version": "1.24.0",
"service.name": "unknown_service"
},
"schema_url": ""
}
}
This tutorial provides guidance on how to export the OpenTelemetry traces to a tracing backend. This will require defining an OpenTelemetry compatible exporter inside a Docker image and referencing that exporter inside the service YAML.
To export traces to a tracing backend, we need to define a tracing exporter function in exporter.py
. The tracing exporter needs to be a Python function that takes no arguments and returns a list of type SpanProcessor
. Note, you can configure this function to return several span processors so traces are exported to multiple backends.
import os
from opentelemetry.ext.honeycomb import HoneycombSpanExporter
from opentelemetry.sdk.trace import SpanProcessor
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from typing import List
# Replace those with the actual values.
HONEYCOMB_SERVICE_NAME = os.getenv("HONEYCOMB_SERVICE_NAME", "")
HONEYCOMB_WRITE_KEY = os.getenv("HONEYCOMB_WRITE_KEY", "")
HONEYCOMB_DATASET_NAME = os.getenv("HONEYCOMB_DATASET_NAME", "")
def default_tracing_exporter() -> List[SpanProcessor]:
exporter = HoneycombSpanExporter(
service_name=HONEYCOMB_SERVICE_NAME,
writekey=HONEYCOMB_WRITE_KEY,
dataset=HONEYCOMB_DATASET_NAME,
)
return [BatchSpanProcessor(exporter)]
Then define a Dockerfile and environment dependencies.
# requirements.txt
asgiref==3.8.1
deprecated==1.2.14
importlib-metadata==8.2.0
libhoney==2.4.0
opentelemetry-api==1.25.0
opentelemetry-ext-honeycomb==1.3.0
opentelemetry-instrumentation==0.46b0
opentelemetry-instrumentation-asgi==0.46b0
opentelemetry-instrumentation-fastapi==0.45b0
opentelemetry-sdk==1.25.0
opentelemetry-semantic-conventions==0.46b0
opentelemetry-util-http==0.46b0
statsd==4.0.1
zipp==3.20.0
# Use Anyscale base image
FROM anyscale/ray:2.34.0-slim-py310
# Copy the requirements file into the Docker image
COPY requirements.txt .
# Install all dependencies specified in requirements.txt
RUN pip install --no-cache-dir --no-dependencies -r requirements.txt
# Copy exporter file and application definitions into the Docker image
COPY exporter.py /home/ray/exporter.py
COPY serve_hello.py /home/ray/serve_hello.py
COPY fp.py /home/ray/fp.py
# Add working directory into python path so they are importable
ENV PYTHONPATH=/home/ray
After defining the Dockerfile, build and push the Docker image with the following commands.
# build the Docker image
docker build . -t my-registry/my-image:tag
# push the Docker image to your registry
docker push my-registry/my-image:tag
Next, define the service configuration with a service YAML and image_uri
that points to the image. Also, define the module in exporter_import_path
to load the span exporters when tracing is setup
name: tracing-service-with-exporter
image_uri: <IMAGE_URI>
applications:
- name: my_app
route_prefix: '/'
import_path: serve_hello:app
runtime_env: {}
tracing_config:
exporter_import_path: exporter:default_tracing_exporter
enabled: True
sampling_ratio: 1.0
To deploy the service, we can run the following command.
anyscale service deploy -f tracing_service_with_exporter.yaml
After querying your application, traces will be exported to the backend defined in exporter.py
.
To properly propagate traces between upstream and downstream services, you need to
ensure that traceparent
is passed in the headers of the request.
TraceContextTextMapPropagator().inject()
serializes the trace context and add
the proper traceparent
to the header object. The following code snippet
demonstrates how to propagate traces between two services.
import asyncio
import requests
from opentelemetry import trace
from opentelemetry.trace.propagation.tracecontext import (
TraceContextTextMapPropagator,
)
from opentelemetry.trace.status import Status, StatusCode
from ray import serve
from ray.anyscale.serve._private.tracing_utils import (
get_trace_context,
)
from starlette.requests import Request
@serve.deployment
class UpstreamApp:
def __call__(self, request: Request):
# Create a new span associated with the current trace.
tracer = trace.get_tracer(__name__)
with tracer.start_as_current_span(
"upstream_application_span", context=get_trace_context()
) as span:
url = f"{str(request.url).replace('http://', 'https://')}downstream"
headers = {"Authorization": request.headers.get("authorization")}
# Inject the trace context into the headers to propagate it downstream.
ctx = get_trace_context()
TraceContextTextMapPropagator().inject(headers, ctx)
# Go out to network to call the downstream service.
resp = requests.get(url, headers=headers)
replica_context = serve.get_replica_context()
# Update the span attributes and status.
attributes = {
"deployment": replica_context.deployment,
"replica_id": replica_context.replica_id.unique_id
}
span.set_attributes(attributes)
span.set_status(
Status(status_code=StatusCode.OK)
)
# Return message.
return {
"upstream_message": "Hello world from UpstreamApp!",
"downstream_message": resp.text,
}
@serve.deployment
class DownstreamApp:
async def __call__(self):
# Create a new span associated with the current trace.
tracer = trace.get_tracer(__name__)
with tracer.start_as_current_span(
"downstream_application_span", context=get_trace_context()
) as span:
replica_context = serve.get_replica_context()
# Update the span attributes and status.
attributes = {
"deployment": replica_context.deployment,
"replica_id": replica_context.replica_id.unique_id
}
span.set_attributes(attributes)
span.set_status(
Status(status_code=StatusCode.OK)
)
# Simulate some work.
await asyncio.sleep(0.5)
# Return message.
return "Hello world from DownstreamApp!"
upstream_app = UpstreamApp.bind()
downstream_app = DownstreamApp.bind()
Define the service configuration with a service YAML like below. This service
creates two endpoints, one for the upstream service and one for the downstream service.
The traces continue to export to the backend defined in exporter.py
from the
previous section.
name: tracing-upsteam-downstream-service
image_uri: <IMAGE_URI>
applications:
- name: app
route_prefix: /
import_path: serve_call_external_service:upstream_app
runtime_env: {}
- name: app2
route_prefix: /downstream
import_path: serve_call_external_service:downstream_app
runtime_env: {}
tracing_config:
exporter_import_path: exporter:default_tracing_exporter
enabled: True
sampling_ratio: 1.0
To deploy the service, run the following command:
anyscale service deploy -f tracing_upstream_downstream_service.yaml
After querying your application, Anyscale exports traces to Honeycomb. The spans are linked properly between the upstream and downstream services.