-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 9139bb8
Showing
2 changed files
with
557 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,396 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import gym" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"+---------+\n", | ||
"|R: | : :\u001b[35mG\u001b[0m|\n", | ||
"| : | : : |\n", | ||
"| : : : : |\n", | ||
"| | : | : |\n", | ||
"|Y| : |\u001b[34;1mB\u001b[0m:\u001b[43m \u001b[0m|\n", | ||
"+---------+\n", | ||
"\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"env = gym.make(\"Taxi-v3\").env\n", | ||
"env.render()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"7" | ||
] | ||
}, | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"env.reset()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"+---------+\n", | ||
"|\u001b[43mR\u001b[0m: | : :\u001b[34;1mG\u001b[0m|\n", | ||
"| : | : : |\n", | ||
"| : : : : |\n", | ||
"| | : | : |\n", | ||
"|Y| : |\u001b[35mB\u001b[0m: |\n", | ||
"+---------+\n", | ||
"\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"env.render()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"+---------+\n", | ||
"|R: | : :\u001b[35mG\u001b[0m|\n", | ||
"| : |\u001b[43m \u001b[0m: : |\n", | ||
"| : : : : |\n", | ||
"| | : | : |\n", | ||
"|\u001b[34;1mY\u001b[0m| : |B: |\n", | ||
"+---------+\n", | ||
"\n", | ||
"Action SpaceDiscrete(6)\n", | ||
"Action SpaceDiscrete(500)\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"env.reset()\n", | ||
"env.render()\n", | ||
"print(\"Action Space{}\".format(env.action_space))\n", | ||
"print(\"Action Space{}\".format(env.observation_space))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 12, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"State : 328\n", | ||
"+---------+\n", | ||
"|R: | : :\u001b[35mG\u001b[0m|\n", | ||
"| : |\u001b[43m \u001b[0m: : |\n", | ||
"| : : : : |\n", | ||
"| | : | : |\n", | ||
"|\u001b[34;1mY\u001b[0m| : |B: |\n", | ||
"+---------+\n", | ||
"\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"state = env.encode(3,1,2,0)\n", | ||
"print(\"State :\", state)\n", | ||
"env.render()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 13, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"{0: [(1.0, 428, -1, False)],\n", | ||
" 1: [(1.0, 228, -1, False)],\n", | ||
" 2: [(1.0, 348, -1, False)],\n", | ||
" 3: [(1.0, 328, -1, False)],\n", | ||
" 4: [(1.0, 328, -10, False)],\n", | ||
" 5: [(1.0, 328, -10, False)]}" | ||
] | ||
}, | ||
"execution_count": 13, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"env.P[328]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 17, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Timesteps taken: 1079\n", | ||
"Penalties incurred: 354\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"env.s = 328\n", | ||
"epochs = 0\n", | ||
"penalties, reward = 0,0\n", | ||
"frames= []\n", | ||
"done = False\n", | ||
"while not done:\n", | ||
" action = env.action_space.sample()\n", | ||
" state, reward, done, info = env.step(action)\n", | ||
" if reward == -10:\n", | ||
" penalties += 1\n", | ||
" \n", | ||
" frames.append({ \n", | ||
" 'frame': env.render(mode='ansi'),\n", | ||
" 'state': state,\n", | ||
" 'action': action,\n", | ||
" 'reward': reward\n", | ||
" }\n", | ||
" )\n", | ||
" epochs +=1\n", | ||
"print(\"Timesteps taken: {}\".format(epochs))\n", | ||
"print(\"Penalties incurred: {}\".format(penalties))\n", | ||
" \n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 25, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Timestep: 1079\n", | ||
"State: 0\n", | ||
"Action: 5\n", | ||
"Reward: 20\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"from IPython.display import clear_output\n", | ||
"from time import sleep\n", | ||
"\n", | ||
"def print_frames(frames):\n", | ||
" for i, frame in enumerate(frames):\n", | ||
" clear_output(wait=True)\n", | ||
"# print(frame['frame'].getvalue())\n", | ||
" print(f\"Timestep: {i + 1}\")\n", | ||
" print(f\"State: {frame['state']}\")\n", | ||
" print(f\"Action: {frame['action']}\")\n", | ||
" print(f\"Reward: {frame['reward']}\")\n", | ||
" sleep(.1)\n", | ||
" \n", | ||
"print_frames(frames)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 27, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"q_table = np.zeros([env.observation_space.n, env.action_space.n])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 29, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Episode: 100000\n", | ||
"Training finished.\n", | ||
"\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"\"\"\" Training The Agent \"\"\"\n", | ||
"import random\n", | ||
"from IPython.display import clear_output\n", | ||
"\n", | ||
"alpha = 0.1\n", | ||
"gamma = 0.6\n", | ||
"epsilon = 0.1\n", | ||
"all_epochs = []\n", | ||
"all_penalties = []\n", | ||
"for i in range(1, 100001):\n", | ||
" state = env.reset()\n", | ||
" epochs, penalties, reward = 0, 0, 0\n", | ||
" done = False\n", | ||
" \n", | ||
" while not done:\n", | ||
" if random.uniform(0,1) < epsilon:\n", | ||
" action = env.action_space.sample() #Explore action space\n", | ||
" else:\n", | ||
" action = np.argmax(q_table[state]) #Exploit learned values\n", | ||
" \n", | ||
" next_state, reward, done, info = env.step(action) \n", | ||
" \n", | ||
" old_value = q_table[state, action]\n", | ||
" next_max = np.max(q_table[next_state])\n", | ||
" \n", | ||
" new_value = (1 - alpha) * old_value + alpha * (reward + gamma * next_max)\n", | ||
" q_table[state, action] = new_value\n", | ||
"\n", | ||
" if reward == -10:\n", | ||
" penalties += 1\n", | ||
"\n", | ||
" state = next_state\n", | ||
" epochs += 1\n", | ||
" \n", | ||
" if i % 100 == 0:\n", | ||
" clear_output(wait=True)\n", | ||
" print(f\"Episode: {i}\")\n", | ||
"\n", | ||
"print(\"Training finished.\\n\")\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 30, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"array([ -2.40943541, -2.27325184, -2.41396927, -2.36299859,\n", | ||
" -10.52639717, -10.68579624])" | ||
] | ||
}, | ||
"execution_count": 30, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"q_table[328]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 32, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Results after 500 episodes:\n", | ||
"Average timesteps per episode: 12.906\n", | ||
"Average penalties per episode: 0.0\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"\"\"\"Evaluate agent's performance after Q-learning\"\"\"\n", | ||
"\n", | ||
"total_epochs, total_penalties = 0, 0\n", | ||
"episodes = 500\n", | ||
"\n", | ||
"for _ in range(episodes):\n", | ||
" state = env.reset()\n", | ||
" epochs, penalties, reward = 0, 0, 0\n", | ||
" \n", | ||
" done = False\n", | ||
" \n", | ||
" while not done:\n", | ||
" action = np.argmax(q_table[state])\n", | ||
" state, reward, done, info = env.step(action)\n", | ||
"\n", | ||
" if reward == -10:\n", | ||
" penalties += 1\n", | ||
"\n", | ||
" epochs += 1\n", | ||
"\n", | ||
" total_penalties += penalties\n", | ||
" total_epochs += epochs\n", | ||
"\n", | ||
"print(f\"Results after {episodes} episodes:\")\n", | ||
"print(f\"Average timesteps per episode: {total_epochs / episodes}\")\n", | ||
"print(f\"Average penalties per episode: {total_penalties / episodes}\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.