-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add schema_converter from fink-broker (#60)
* Add schema_converter from fink-broker * Bump to 0.13.6 * PEP8
- Loading branch information
1 parent
965f860
commit e661a6a
Showing
2 changed files
with
182 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,181 @@ | ||
# Copyright 2023 AstroLab Software | ||
# Author: Fabrice Jammes | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
""" | ||
Convert a Spark dataframe schema to an Avro schema | ||
""" | ||
|
||
import json | ||
from typing import Any, Dict | ||
|
||
from pyspark.sql.types import StructType | ||
|
||
def _is_nullable(field: Dict[Any, Any], avro_type: Any) -> Any: | ||
avro_type_out: Any | ||
if field['nullable']: | ||
avro_type_out = [avro_type, "null"] | ||
elif not field['nullable']: | ||
avro_type_out = avro_type | ||
else: | ||
raise ValueError("Unknown value for 'nullable' key in field: ", field) | ||
return avro_type_out | ||
|
||
def _parse_array(data: Dict[Any, Any], name: str) -> Dict[Any, Any]: | ||
out: Dict[Any, Any] = dict() | ||
out['type'] = "array" | ||
if data['elementType']['type'] == 'struct': | ||
items = _parse_struct(data['elementType'], name) | ||
if data['containsNull']: | ||
out['items'] = [items, "null"] | ||
else: | ||
out['items'] = items | ||
else: | ||
raise ValueError("Unknown type in parse_array()") | ||
return out | ||
|
||
def _parse_map(data: Dict[Any, Any]) -> Dict[Any, Any]: | ||
out: Dict[Any, Any] = dict() | ||
out['type'] = "map" | ||
values = data['valueType'] | ||
out['values'] = "map" | ||
if data['valueContainsNull']: | ||
out['values'] = [values, "null"] | ||
else: | ||
out['values'] = values | ||
return out | ||
|
||
def _parse_struct(data: Dict[Any, Any], name: str = "") -> Dict[Any, Any]: | ||
"""Convert struct below | ||
{ | ||
"fields":[ | ||
{ | ||
SparkFieldElem1 | ||
}, | ||
{ | ||
SparkFieldElem2 | ||
}, | ||
... | ||
] | ||
"type":"struct" | ||
} | ||
to | ||
{ | ||
"type": "record", | ||
"name": "topLevelRecord", | ||
"fields": [ | ||
{ | ||
AvroFieldElem1 | ||
}, | ||
{ | ||
AvroFieldElem2 | ||
}, | ||
... | ||
] | ||
} | ||
Parameters | ||
---------- | ||
data : Dict[Any, Any] | ||
Spark dataframe json schema | ||
{ | ||
"name": "myname" | ||
"fields":[ | ||
{ | ||
SparkFieldElem1 | ||
}, | ||
{ | ||
SparkFieldElem2 | ||
}, | ||
... | ||
] | ||
"type":"struct" | ||
} | ||
Returns | ||
------- | ||
Dict[Any, Any] | ||
Avro schema | ||
{ | ||
"type": "record", | ||
"name": "topLevelRecord.myname", | ||
"fields": [ | ||
{ | ||
AvroFieldElem1 | ||
}, | ||
{ | ||
AvroFieldElem2 | ||
}, | ||
... | ||
] | ||
} | ||
Raises | ||
------ | ||
ValueError | ||
In case an unknown entity is found in Spark Dataframe schema | ||
""" | ||
avroRecord: Dict[Any, Any] = dict() | ||
avroRecord['type'] = "record" | ||
if name: | ||
avroRecord['name'] = "topLevelRecord." + name | ||
else: | ||
avroRecord['name'] = "topLevelRecord" | ||
if data['type'] not in ['struct']: | ||
raise ValueError("Expected ['struct'] type, is ", data['type']) | ||
avroRecord['fields'] = [] | ||
avro_type: Any | ||
for field in data['fields']: | ||
outField: Dict[Any, Any] = dict() | ||
outField['name'] = field['name'] | ||
if isinstance(field['type'], str): | ||
if field['type'] == "integer": | ||
avro_type = 'int' | ||
elif field['type'] == "binary": | ||
avro_type = 'bytes' | ||
else: | ||
avro_type = field['type'] | ||
outField['type'] = _is_nullable(field, avro_type) | ||
avroRecord['fields'].append(outField) | ||
elif 'type' in field['type']: | ||
subData = field['type'] | ||
if subData['type'] == 'struct': | ||
outField['type'] = _parse_struct(subData, field['name']) | ||
elif subData['type'] == 'array': | ||
avro_type = _parse_array(subData, field['name']) | ||
outField['type'] = _is_nullable(field, avro_type) | ||
elif subData['type'] == 'map': | ||
avro_type = _parse_map(subData) | ||
outField['type'] = _is_nullable(field, avro_type) | ||
else: | ||
raise ValueError("Unknown type", subData['type']) | ||
avroRecord['fields'].append(outField) | ||
return avroRecord | ||
|
||
def to_avro(spark_schema: StructType) -> str: | ||
"""Convert a Spark dataframe schema to an Avro schema | ||
Parameters | ||
---------- | ||
spark_schema : StructType | ||
Spark dataframe schema | ||
Returns | ||
------- | ||
str | ||
String containing avro schema, in json format | ||
""" | ||
json_avro = _parse_struct(spark_schema.jsonValue()) | ||
return json.dumps(json_avro, indent=2) |