Benchmarking Learning-based Bitrate Ladder Prediction Methods for Adaptive Video Streaming
This repository contains the code for our paper on Benchmarking Learning-based Bitrate Ladder Prediction Methods for Adaptive Video Streaming. If you use any of our code, please cite:
@article{Telili2022,
title = {Benchmarking Learning-based Bitrate Ladder Prediction Methods for Adaptive Video Streaming},
author = {Ahmed Telili, Wassim Hamidouche, Sid Ahmed Fezza, and Luce Morin},
year = {2022}
}
pip install -r requirements.txt
python features_extration [-h] [-r 'path to raw videos directory']
[-f 'path to meta-data csv file']
[-o 'overlapping between patches']
python features_extration [-h] [-v 'path to raw videos directory']
[-f 'path to meta-data csv file']
[-np 'number of patches']
[-nf 'number of frames']
[-m 'backbone model']
[-o 'overlapping between patches']
Please note that we provide four pretrained backbone models for features extraction: resnet50, densenet169, vgg16 and inception_v3.
Training can be started by importing Bitrate_Ladder.ipynb in Google Colab or Jupyter Notebook.
python train.py [-h] [-v 'path to raw videos directory']
[-np 'number of patches']
[-nf 'number of frames']
[-b 'batch_size (1)']
Methods \ Scores | R2 | SROCC | PLCC | ACCURACY | BD-BR vs GT | BD-BR vs AL | BD-BR vs RL |
---|---|---|---|---|---|---|---|
ExtraTrees Regressor | 0.7635 | 0.8174 | 0.9000 | 0.8779 | 1.433% | -18.427% | -9.025% |
XGBoost | 0.6165 | 0.7560 | 0.8278 | 0.8578 | 2.320% | -18.099% | -8.706% |
Gaussian Process | 0.6390 | 0.7620 | 0.8473 | 0.8566 | 1.740% | -18.244% | -6.286% |
Random Forest Regressor | 0.6758 | 0.7993 | 0.8440 | 0.8671 | 1.535% | -18.324% | -8.879% |
Densenet169 | 0.4725 | 0.6423 | 0.7756 | 0.8166 | 3.380% | -15.669% | -8.169% |
VGG16 | 0.5172 | 0.5236 | 0.7652 | 0.8223 | 3.083% | -15.536% | -8.088% |
ResNet-50 | 0.4564 | 0.5680 | 0.7457 | 0.8483 | 2.424% | -15.806% | -8.300% |
EfficientNet B7 | 0.4237 | 0.5649 | 0.7159 | 0.8004 | 3.396% | -15.506% | -8.012% |
Methods \ Scores | R2 | SROCC | PLCC | ACCURACY | BD-BR vs GT | BD-BR vs AL | BD-BR vs RL |
---|---|---|---|---|---|---|---|
ExtraTrees Regressor | 0.6420 | 0.6635 | 0.8277 | 0.8400 | 2.704% | -18.827% | -8.798% |
XGBoost | 0.5533 | 0.6470 | 0.7997 | 0.8347 | 3.444% | -18.650% | -8.608% |
Gaussian Process | 0.4292 | 0.4918 | 0.6983 | 0.8012 | 5.254% | -18.328% | -7.688% |
Random Forest Regressor | 0.5899 | 0.6564 | 0.8059 | 0.8300 | 3.052% | -18.887% | -8.616% |
Densenet169 | 0.4216 | 0.6167 | 0.6433 | 0.7901 | 3.820% | -15.892% | -7.851% |
VGG16 | 0.4992 | 0.5112 | 0.7601 | 0.8052 | 4.125% | -15.812% | -7.593% |
ResNet-50 | 0.4045 | 0.5367 | 0.6962 | 0.8278 | 2.969% | -15.941% | -7.810% |
EfficientNet B7 | 0.3920 | 0.5612 | 0.6905 | 0.7781 | 4.742% | -15.771% | -7.607% |