Skip to content

auto-res/autores-evaluator

Repository files navigation

AutoRes Evaluator

※ 追加で実装して欲しい機能や質問などがあれば以下のissuesから投稿をお願いします

https://github.com/auto-res/autores-evaluator/issues/new

Examples

  • A+Bのデータセットを試す用 Open In Colab

  • Prediction by logistic regression on the Titanic dataset Open In Colab

  • Prediction by CNN on CIFAR10 Open In Colab

Architecture

ロゴ1

How to use

pip install autoresevaluator

from autoresevaluator import AutoResEvaluator
  • Setting
# Hyperparameter setting
# Specify "type" and "args" for items to be searched in optuna.
params = {
    'lambda_l1': {'type': 'log_float', 'args': [1e-8, 10.0]},
    'lambda_l2': {'type': 'log_float', 'args': [1e-8, 10.0]},
    'num_leaves': {'type': 'int', 'args': [2, 256]},
    'feature_fraction': {'type': 'float', 'args': [0.4, 1.0]},
    'bagging_fraction': {'type': 'float', 'args': [0.4, 1.0]},
    'verbosity': -1
}

are = AutoResEvaluator(
    # LLM name ('gpt-4-turbo-preview', 'gemini-pro', 'claude-3-opus-20240229')
    llm_name='gpt-4-turbo-preview',
    # dataset name
    dataset_name='titanic',
    # parameter
    params=params,
    # Metrics you want to maximize/minimize
    valuation_index='roc_auc',
    # Where to store data
    datasave_path=None
    )
  • Execution
# model file path
model_path='/content/example.py',

are.exec(model_path)

Output

  • result.log

    • File to output the results
  • model_error.log

    • File to write errors in model files

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published