Skip to content

This repository shows how to train an object detection algorithm with Detectron2 on Amazon SageMaker

License

Notifications You must be signed in to change notification settings

aws-samples/amazon-sagemaker-pytorch-detectron2

Object Detection with Detectron2 on Amazon SageMaker

Overview

In this repository, we use Amazon SageMaker to build, train and deploy Faster-RCNN and RetinaNet models using Detectron2. Detectron2 is an open-source project released by Facebook AI Research and build on top of PyTorch deep learning framework. Detectron2 makes easy to build, train and deploy state of the art object detection algorithms. Moreover, Detecron2’s design makes easy to implement cutting-edge research projects without having to fork the entire codebase.Detectron2 also provides a Model Zoo which is a collection of pre-trained detection models we can use to accelerate our endeavour.

This repository shows how to do the following:

  • Build Detectron2 Docker images and push them to Amazon ECR to run training and inference jobs on Amazon SageMaker.
  • Register a dataset in Detectron2 catalog from annotations in augmented manifest files. Augmented manifest file is the output format of Amazon SageMaker Ground Truth annotation jobs.
  • Run a SageMaker Training job to finetune pre-trained model weights on a custom dataset.
  • Configure SageMaker Hyperparameter Optimization jobs to finetune hyper-parameters.
  • Run a SageMaker Batch Transform job to predict bouding boxes in a large chunk of images.

Get Started

Create a SageMaker notebook instance with an EBS volume equal or bigger than 30 GB and add the following lines to start notebook section of your life cycle configuration:

service docker stop
sudo mv /var/lib/docker /home/ec2-user/SageMaker/docker
sudo ln -s /home/ec2-user/SageMaker/docker /var/lib/docker
service docker start

This ensures that docker builds images to a folder that is mounted on EBS. Once the instance is running, open Jupyter lab, launch a terminal and clone this repository:

cd SageMaker
git clone https://github.com/aws-samples/amazon-sagemaker-pytorch-detectron2.git
cd amazon-sagemaker-pytorch-detectron2

Open the notebook. Follow the instruction in the notebook and use conda_pytorch_p36 as kernel to execute code cells.

You can also test the content in this repository on an EC2 that is running the AWS Deep Learning AMI.

Instructions

You will use a Detectron2 object detection model to recognize objects in densely packed scenes. You will use the SKU-110k dataset for this task. Be aware that the authors of the dataset provided it solely for academic and non-commercial purposes. Please refer to the following paper for further details on the dataset:

@inproceedings{goldman2019dense,
 author    = {Eran Goldman and Roei Herzig and Aviv Eisenschtat and Jacob Goldberger and Tal Hassner},
 title     = {Precise Detection in Densely Packed Scenes},
 booktitle = {Proc. Conf. Comput. Vision Pattern Recognition (CVPR)},
 year      = {2019}
}

If you want details on the code used for training and prediction, please refer to code documentation in the respective source directories.

Security

See CONTRIBUTING for more information.

License

This library is licensed under the MIT-0 License. See the LICENSE file.

About

This repository shows how to train an object detection algorithm with Detectron2 on Amazon SageMaker

Topics

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published